-
Expand entry
-
Added by: Berta GrimauPublisher's Note: Although sequent calculi constitute an important category of proof systems, they are not as well known as axiomatic and natural deduction systems. Addressing this deficiency, Proof Theory: Sequent Calculi and Related Formalisms presents a comprehensive treatment of sequent calculi, including a wide range of variations. It focuses on sequent calculi for various non-classical logics, from intuitionistic logic to relevance logic, linear logic, and modal logic. In the first chapters, the author emphasizes classical logic and a variety of different sequent calculi for classical and intuitionistic logics. She then presents other non-classical logics and meta-logical results, including decidability results obtained specifically using sequent calculus formalizations of logics.
-
Expand entry
-
Added by: Berta Grimau, Contributed by: Matt ClemensPublisher's Note: This teaching book is designed to help its readers to reason systematically, reliably, and to some extent self-consciously, in the course of their ordinary pursuits-primarily in inquiry and in decision making. The principles and techniques recommended are explained and justified - not just stated; the aim is to teach orderly thinking, not the manipulation of symbols. The structure of material follows that of Quine's Methods of Logic, and may be used as an introduction to that work, with sections on truth-functional logic, predicate logic, relational logic, and identity and description. Exercises are based on problems designed by authors including Quine, John Cooley, Richard Jeffrey, and Lewis Carroll.
Comment: This book is adequate for a first course on formal logic. Moreover, its table of contents follows that of Quine's "Methods of Logic", thus it can serve as an introduction or as a reference text for the study of the latter.
-
Expand entry
-
Added by: Berta GrimauPublisher’s Note: Description - This comprehensive introduction presents the fundamentals of symbolic logic clearly, systematically, and in a straightforward style accessible to readers. Each chapter, or unit, is divided into easily comprehended small bites that enable learners to master the material step-by-step, rather than being overwhelmed by masses of information covered too quickly. The book provides extremely detailed explanations of procedures and techniques, and was written in the conviction that anyone can thoroughly master its content. A four-part organization covers sentential logic, monadic predicate logic, relational predicate logic, and extra credit units that glimpse into alternative methods of logic and more advanced topics.
Comment: This book is ideal for a first introduction course to formal logic. It doesn't presuppose any logical knowledge. It covers propositional and first-order logic (monadic and relational).
-
Expand entry
-
Added by: Berta GrimauSummary: This article provides the basics of a typical logic, sometimes called 'classical elementary logic' or 'classical first-order logic', in a rigorous yet accessible manner. Section 2 develops a formal language, with a syntax and grammar. Section 3 sets up a deductive system for the language, in the spirit of natural deduction. Section 4 provides a model-theoretic semantics. Section 5 turns to the relationships between the deductive system and the semantics, and in particular, the relationship between derivability and validity. The authors show that an argument is derivable only if it is valid (soundness). Then they establish a converse: that an argument is valid only if it is derivable (completeness). They also briefly indicate other features of the logic, some of which are corollaries to soundness and completeness. The final section, Section 6, is devoted to a brief examination of the philosophical position that classical logic is 'the one right logic'.
Comment: This article introduces all the necessary tools in order to understand both the proof-theoretic and the model-theoretic aspects of first-order classical logical consequence. As such it can be used as a main reading in an introductory logic course covering classical first-order logic (assuming the students will have already looked at classical propositional logic). Moreover, the article covers some metatheoretic results (soundness, completeness, compactness, upward and downward Löwenheim-Skolem), which makes it suitable as a reading for a slightly more advanced course in logic. Finally, the article includes a brief incursion into the topic of logical pluralism. This makes it suitable to be used in a course on non-classical logics with an introduction module on classical logic.
-
Expand entry
-
Added by: Clotilde Torregrossa, Contributed by: Matthew ClemensAbstract: In this paper I examine some research on how to diminish or eliminate stereotype threat in mathematics. Some of the successful strategies include: informing our students about stereotype threat, challenging the idea that logical intelligence is an 'innate' ability, making students In threatened groups feel welcomed, and introducing counter-stereotypical role models. The purpose of this paper is to take these strategies that have proven successful and come up with specific ways to incorporate them into introductory logic classes. For example, the possible benefit of presenting logic to our undergraduate students by concentrating on aspects of logic that do not result in a clash of schemas.
Comment: A very accessible paper, requiring virtually no previous knowledge of logic or feminist philosophy. It is particularly appropriate for the "logic" session of a course on teaching philosophy. It can also be proposed as a preliminary reading for an intro to Logic course, insofar as knowledge of the interaction between stereotype threat and logic performance can have a positive effect on the performance of those potentially affected (as argued in the paper itself).
-
Expand entry
-
Added by: Chris Blake-TurnerAbstract: The present article provides an introduction to classical Chinese logic, a term which refers to ancient discourses that were developed before the arrival of significant external influences and which flourished in China until the first unification of China, during the Qin Dynasty. Taking as its premise that logic implies both universal and culturally conditioned elements, the author describes the historical background of Chinese logic, the main schools of Chinese logical thought, the current state of research in this area and the crucial concepts and methods applied in classical Chinese logic. The close link between Chinese logic and the Chinese language is also stressed
Comment: Presupposes some familiarity with Aristotelian and Fregean logic, as well as ideas in analytic philosophy of language (e.g., theories of reference). This would be a good piece for countering the prejudice that nothing worthy of being called logic was done in the classical Chinese tradition. It is also a good piece for expanding students' imaginative horizons and showing them how their ideas of what logic is have been culturally shaped.
Comment: This book can be used in a variety of advanced undergraduate and postgraduate courses. Chapters 1, 2, 3 and 8 may be useful in an advanced undergraduate or beginning graduate course, where an emphasis is placed on classical logic and on a range of different proof calculi (mainly for classical logic). Chapters 4, 5 and 6 deal almost exclusively with non-classical logics. Chapters 7 and 9 are rich in meta-logical results, including results that have been obtained specifically using sequent calculus formalizations of various logics. These last five chapters might be used in a graduate course that embraces classical and nonclassical logics together with their meta-theory. To facilitate the use of the book as a text in a course, the text is peppered with exercises. In general, the starring indicates an increase in difficulty, however, sometimes an exercise is starred simply because it goes beyond the scope of the book or it is very lengthy. Solutions to selected exercises may be found on the web at the URL www.ualberta.ca/˜bimbo/ProofTheoryBook.