Full text Read free See used
Millstein, Roberta, , . Natural Selection as a Population-Level Causal Process
2006, The British Journal for the Philosophy of Science 57(4): 627-653.
Expand entry
Added by: Jamie Collin, Contributed by:

Abstract: Recent discussions in the philosophy of biology have brought into question some fundamental assumptions regarding evolutionary processes, natural selection in particular. Some authors argue that natural selection is nothing but a population-level, statistical consequence of lower-level events (Matthen and Ariew [2002]; Walsh et al. [2002]). On this view, natural selection itself does not involve forces. Other authors reject this purely statistical, population-level account for an individual-level, causal account of natural selection (Bouchard and Rosenberg [2004]). I argue that each of these positions is right in one way, but wrong in another; natural selection indeed takes place at the level of populations, but it is a causal process nonetheless.

Comment: This would be useful in a course on the philosophy of science, the philosophy of biology, or in a section on causation in a course on metaphysics. The paper would be appropriate for undergraduate or graduate-level courses. It is quite long.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options
Full text Read free See used
Millstein, Roberta L., , . Probability in Biology: The Case of Fitness
2016,
Expand entry
Added by: Barbara Cohn, Contributed by: Anya Plutynski

Abstract: I argue that the propensity interpretation of fitness, properly understood, not only solves the explanatory circularity problem and the mismatch problem, but can also withstand the Pandora’s box full of problems that have been thrown at it. Fitness is the propensity (i.e., probabilistic ability, based on heritable physical traits) for organisms or types of organisms to survive and reproduce in particular environments and in particular populations for a specified number of generations; if greater than one generation, ‘reproduction’ includes descendants of descendants. Fitness values can be described in terms of distributions of propensities to produce varying number of offspring and can be modeled for any number of generations using computer simulations, thus providing both predictive power and a means for comparing the fitness of different phenotypes. Fitness is a causal concept, most notably at the population level, where fitness differences are causally responsible for differences in reproductive success. Relative fitness is ultimately what matters for natural selection.

Comment: I use this in discussions of natural selection and probability in evolution.
[This is a stub entry. Please add your comments to help us expand it]

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options