-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
We present a case study of how mathematicians write for mathematicians. We have conducted interviews with two research mathematicians, the talented PhD student Adam and his experienced supervisor Thomas, about a research paper they wrote together. Over the course of 2 years, Adam and Thomas revised Adam’s very detailed first draft. At the beginning of this collaboration, Adam was very knowledgeable about the subject of the paper and had good presentational skills but, as a new PhD student, did not yet have experience writing research papers for mathematicians. Thus, one main purpose of revising the paper was to make it take into account the intended audience. For this reason, the changes made to the initial draft and the authors’ purpose in making them provide a window for viewing how mathematicians write for mathematicians. We examined how their paper attracts the interest of the reader and prepares their proofs for validation by the reader. Among other findings, we found that their paper prepares the proofs for two types of validation that the reader can easily switch between.
-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract: Mathematicians appear to have quite high standards for when they will rely on testimony. Many mathematicians require that a number of experts testify that they have checked the proof of a result p before they will rely on p in their own proofs without checking the proof of p. We examine why this is. We argue that for each expert who testifies that she has checked the proof of p and found no errors, the likelihood that the proof contains no substantial errors increases because different experts will validate the proof in different ways depending on their background knowledge and individual preferences. If this is correct, there is much to be gained for a mathematician from requiring that a number of experts have checked the proof of p before she will rely on p in her own proofs without checking the proof of p. In this way a mathematician can protect her own work and the work of others from errors. Our argument thus provides an explanation for mathematicians’ attitude towards relying on testimony.
Comment (from this Blueprint): The orthodox picture of mathematical knowledge is so individualistic that it often leaves out the mathematician themselves. In this piece, Andersen et al. look at what role testimony plays in mathematical knowledge. They thereby emphasise social features of mathematical proofs, and why this can play an important role in deciding which results to trust in the maths literature.
-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract: This chapter is based on the talk that I gave in August 2018 at the ICM in Rio de Janeiro at the panel on The Gender Gap in Mathematical and Natural Sciences from a Historical Perspective. It provides some examples of the challenges and prejudices faced by women mathematicians during last two hundred and fifty years. I make no claim for completeness but hope that the examples will help to shed light on some of the problems many women mathematicians still face today.
Comment (from this Blueprint): Barrow-Green is a historian of mathematics. In this paper she documents some of the challenges that women faced in mathematics over the last 250 years, discussing many famous women mathematicians and the prejudices and injustices they faced.
-
Expand entry
-
, Contributed by: Quentin PharrPublisher’s Note: Plato's Sun-Like Good is a revolutionary discussion of the Republic's philosopher-rulers, their dialectic, and their relation to the form of the good. With detailed arguments Sarah Broadie explains how, if we think of the form of the good as 'interrogative', we can re-conceive those central reference-points of Platonism in down-to-earth terms without loss to our sense of Plato's philosophical greatness. The book's main aims are: first, to show how for Plato the form of the good is of practical value in a way that we can understand; secondly, to make sense of the connection he draws between dialectic and the form of the good; and thirdly, to make sense of the relationship between the form of the good and other forms while respecting the contours of the sun-good analogy and remaining faithful to the text of the Republic itself.
Comment: This text is an excellent companion text for reading Plato's Republic - especially Books 5 and 6. It provides clear interpretations of the various metaphors and analogies that Plato presents in those books, and it provides one of the most important new interpretations of Plato's conception of philosopher-rulers, the Form of the Good, and philosophical dialectic. This text is primarily for those students who are looking to dive into the relevant debates associated with these books in the Republic. Accordingly, it requires some understanding of some of Plato's other dialogues, as well as some understanding of philosophical and mathematical methodologies as conceived by Plato.
-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract: This article discusses the role of diagrams in mathematical reasoning in the light of a case study in analysis. In the example presented certain combinatorial expressions were first found by using diagrams. In the published proofs the pictures were replaced by reasoning about permutation groups. This article argues that, even though the diagrams are not present in the published papers, they still play a role in the formulation of the proofs. It is shown that they play a role in concept formation as well as representations of proofs. In addition we note that 'visualization' is used in two different ways. In the first sense 'visualization' denotes our inner mental pictures, which enable us to see that a certain fact holds, whereas in the other sense 'visualization' denotes a diagram or representation of something.
Comment (from this Blueprint): In this paper, Carter discusses a case study from free probability theory in which diagrams were used to inspire definitions and proof strategies. Interestingly, the diagrams were not present in the published results making them dispensable in one sense, but Carter argues that they are essential in the sense that their discovery relied on the visualisation supplied by the diagrams.
-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
A source of tension between Philosophers of Mathematics and Mathematicians is the fact that each group feels ignored by the other; daily mathematical practice seems barely affected by the questions the Philosophers are considering. In this talk I will describe an issue that does have an impact on mathematical practice, and a philosophical stance on mathematics that is detectable in the work of practising mathematicians. No doubt controversially, I will call this issue ‘morality’, but the term is not of my coining: there are mathematicians across the world who use the word ‘morally’ to great effect in private, and I propose that there should be a public theory of what they mean by this. The issue arises because proofs, despite being revered as the backbone of mathematical truth, often contribute very little to a mathematician’s understanding. ‘Moral’ considerations, however, contribute a great deal. I will first describe what these ‘moral’ considerations might be, and why mathematicians have appropriated the word ‘morality’ for this notion. However, not all mathematicians are concerned with such notions, and I will give a characterisation of ‘moralist’ mathematics and ‘moralist’ mathematicians, and discuss the development of ‘morality’ in individuals and in mathematics as a whole. Finally, I will propose a theory for standardising or universalising a system of mathematical morality, and discuss how this might help in the development of good mathematics.
Comment (from this Blueprint): Cheng is a mathematician working in Category Theory. In this article she complains about traditional philosophy of mathematics that it has no bearing on real mathematics. Instead, she proposes a system of “mathematical morality” about the normative intuitions mathematicians have about how it ought to be.
-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract: The aim of this article is to investigate specific aspects connected with visualization in the practice of a mathematical subfield: low-dimensional topology. Through a case study, it will be established that visualization can play an epistemic role. The background assumption is that the consideration of the actual practice of mathematics is relevant to address epistemological issues. It will be shown that in low-dimensional topology, justifications can be based on sequences of pictures. Three theses will be defended. First, the representations used in the practice are an integral part of the mathematical reasoning. As a matter of fact, they convey in a material form the relevant transitions and thus allow experts to draw inferential connections. Second, in low-dimensional topology experts exploit a particular type of manipulative imagination which is connected to intuition of two- and three-dimensional space and motor agency. This imagination allows recognizing the transformations which connect different pictures in an argument. Third, the epistemic—and inferential—actions performed are permissible only within a specific practice: this form of reasoning is subject-matter dependent. Local criteria of validity are established to assure the soundness of representationally heterogeneous arguments in low-dimensional topology.
Comment (from this Blueprint): De Toffoli and Giardino look at proof practices in low-dimensional topology, and especially a proof by Rolfsen that relies on epistemic actions on a diagrammatic representation. They make the case that the many diagrams are used to trigger our manipulative imagination to make inferential moves which cannot be reduced to formal statements without loss of intuition.
-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract: According to the received view, genuine mathematical justification derives from proofs. In this article, I challenge this view. First, I sketch a notion of proof that cannot be reduced to deduction from the axioms but rather is tailored to human agents. Secondly, I identify a tension between the received view and mathematical practice. In some cases, cognitively diligent, well-functioning mathematicians go wrong. In these cases, it is plausible to think that proof sets the bar for justification too high. I then propose a fallibilist account of mathematical justification. I show that the main function of mathematical justification is to guarantee that the mathematical community can correct the errors that inevitably arise from our fallible practices.
Comment (from this Blueprint): De Toffoli makes a strong case for the importance of mathematical practice in addressing important issues about mathematics. In this paper, she looks at proof and justification, with an emphasis on the fact that mathematicians are fallible. With this in mind, she argues that there are circumstances under which we can have mathematical justification, despite a possibility of being wrong. This paper touches on many cases and questions that will reappear later across the Blueprint, such as collaboration, testimony, computer proofs, and diagrams.
-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract: During the 1970s and 1980s, a team of Automated Theorem Proving researchers at the Argonne National Laboratory near Chicago developed the Automated Reasoning Assistant, or AURA, to assist human users in the search for mathematical proofs. The resulting hybrid humans+AURA system developed the capacity to make novel contributions to pure mathematics by very untraditional means. This essay traces how these unconventional contributions were made and made possible through negotiations between the humans and the AURA at Argonne and the transformation in mathematical intuition they produced. At play in these negotiations were experimental practices, nonhumans, and nonmathematical modes of knowing. This story invites an earnest engagement between historians of mathematics and scholars in the history of science and science studies interested in experimental practice, material culture, and the roles of nonhumans in knowledge making.
Comment (from this Blueprint): Dick traces the history of the AURA automated reasoning assistant in the 1970s and 80s, arguing that the introduction of the computer system led to novel contributions to mathematics by unconventional means. Dick’s emphasis is on the AURA system as changing the material culture of mathematics, and thereby leading to collaboration and even negotiations between the mathematicians and the computer system.
-
Expand entry
-
Added by: Fenner Stanley TanswellPublisher’s Note: This comprehensive account of the concept and practices of deduction is the first to bring together perspectives from philosophy, history, psychology and cognitive science, and mathematical practice. Catarina Dutilh Novaes draws on all of these perspectives to argue for an overarching conceptualization of deduction as a dialogical practice: deduction has dialogical roots, and these dialogical roots are still largely present both in theories and in practices of deduction. Dutilh Novaes' account also highlights the deeply human and in fact social nature of deduction, as embedded in actual human practices; as such, it presents a highly innovative account of deduction. The book will be of interest to a wide range of readers, from advanced students to senior scholars, and from philosophers to mathematicians and cognitive scientists.
Comment (from this Blueprint): This book by Dutilh Novaes recently won the coveted Lakatos Award. In it, she develops a dialogical account of deduction, where she argues that deduction is implicitly dialogical. Proofs represent dialogues between Prover, who is aiming to establish the theorem, and Skeptic, who is trying to block the theorem. However, the dialogue is both partially adversarial (the two characters have opposite goals) and partially cooperative: the Skeptic’s objections make sure that the Prover must make their proof clear, convincing, and correct. In this chapter, Dutilh Novaes applies her model to mathematical practice, and looks at the way social features of maths embody the Prover-Skeptic dialogical model.
-
Expand entry
-
Added by: Jamie CollinAbstract: The goal of the research programme I describe in this article is a realist epistemology for arithmetic which respects arithmetic's special epistemic status (the status usually described as a prioricity) yet accommodates naturalistic concerns by remaining funda- mentally empiricist. I argue that the central claims which would allow us to develop such an epistemology are (i) that arithmetical truths are known through an examination of our arithmetical concepts; (ii) that (at least our basic) arithmetical concepts are accurate mental representations of elements of the arithmetical structure of the inde- pendent world; (iii) that (ii) obtains in virtue of the normal functioning of our sensory apparatus. The first of these claims protects arithmetic's special epistemic status relative, for example, to the laws of physics, the second preserves the independence of arithmetical truth, and the third ensures that we remain empiricists.
Comment: Useful as a primary or secondary reading in an advanced undergraduate course epistemology (in a section on a priori knowledge) or an advanced undergraduate course on philosophy of mathematics. This is not an easy paper, but it is clear. It is also useful within a teaching context, as it provides a summary of the influential neo-Fregean approach to mathematical knowledge.
-
Expand entry
-
Added by: Jamie CollinSummary: Defends an account of mathematical knowledge in which mathematical knowledge is a kind of modal knowledge. Leng argues that nominalists should take mathematical knowledge to consist in knowledge of the consistency of mathematical axiomatic systems, and knowledge of what necessarily follows from those axioms. She defends this view against objections that modal knowledge requires knowledge of abstract objects, and argues that we should understand possibility and necessity in a primative way.
Comment: This would be useful in an advanced undergraduate course on metaphysics, epistemology or philosophy of logic and mathematics. This is not an easy paper, but Leng does an excellent job of making clear some difficult ideas. The view defended is an important one in both philosophy of logic and philosophy of mathematics. Any reasonably comprehensive treatment of nominalism should include this paper.
-
Expand entry
-
Added by: Jamie CollinPublisher's Note: Our much-valued mathematical knowledge rests on two supports: the logic of proof and the axioms from which those proofs begin. Naturalism in Mathematics investigates the status of the latter, the fundamental assumptions of mathematics. These were once held to be self-evident, but progress in work on the foundations of mathematics, especially in set theory, has rendered that comforting notion obsolete. Given that candidates for axiomatic status cannot be proved, what sorts of considerations can be offered for or against them? That is the central question addressed in this book. One answer is that mathematics aims to describe an objective world of mathematical objects, and that axiom candidates should be judged by their truth or falsity in that world. This promising view - realism - is assessed and finally rejected in favour of another - naturalism - which attends less to metaphysical considerations of objective truth and falsity, and more to practical considerations drawn from within mathematics itself. Penelope Maddy defines this naturalism, explains the motivation for it, and shows how it can be helpfully applied in the assessment of candidates for axiomatic status in set theory. Maddy's clear, original treatment of this fundamental issue is informed by current work in both philosophy and mathematics, and will be accessible and enlightening to readers from both disciplines.
Comment: Good further reading in advanced undergraduate or postgraduate courses on metaphysics, naturalism or philosophy of mathematics. Sections from the book - for instance, the chapters in Part II on indispensability considerations in scientific and mathematical practice - could be profitably read on their own. These sections may also be of interest in philosophy of science courses, as they provide a careful analysis of scientific practice (as it relates to what scientists take themselves to be ontologically committed to).
-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract: Despite increasing rates of women researching in math-intensive fields, publications by female authors remain underrepresented. By analyzing millions of records from the dedicated bibliographic databases zbMATH, arXiv, and ADS, we unveil the chronological evolution of authorships by women in mathematics, physics, and astronomy. We observe a pronounced shortage of female authors in top-ranked journals, with quasistagnant figures in various distinguished periodicals in the first two disciplines and a significantly more equitable situation in the latter. Additionally, we provide an interactive open-access web interface to further examine the data. To address whether female scholars submit fewer articles for publication to relevant journals or whether they are consciously or unconsciously disadvantaged by the peer review system, we also study authors’ perceptions of their submission practices and analyze around 10,000 responses, collected as part of a recent global survey of scientists. Our analysis indicates that men and women perceive their submission practices to be similar, with no evidence that a significantly lower number of submissions by women is responsible for their underrepresentation in top-ranked journals. According to the self-reported responses, a larger number of articles submitted to prestigious venues correlates rather with aspects associated with pronounced research activity, a well-established network, and academic seniority.
Comment (from this Blueprint): Mihaljević and Santamaría here use large-scale quantitative research methods to investigate the gender gap in contemporary mathematics. I’ve recommended reading the introduction and conclusion in order to see what they were doing and what they found out, but the rest of the paper is worth looking at if you want more detailed methods and results.
-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract: Prominent mathematician William Thurston was praised by other mathematicians for his intellectual generosity. But what does it mean to say Thurston was intellectually generous? And is being intellectually generous beneficial? To answer these questions I turn to virtue epistemology and, in particular, Roberts and Wood's (2007) analysis of intellectual generosity. By appealing to Thurston's own writings and interviewing mathematicians who knew and worked with him, I argue that Roberts and Wood's analysis nicely captures the sense in which he was intellectually generous. I then argue that intellectual generosity is beneficial because it counteracts negative effects of the reward structure of mathematics that can stymie mathematical progress.
Comment (from this Blueprint): In this paper, Morris looks at ascriptions of intellectual generosity in mathematics, focusing on the mathematician William Thurston. She looks at how generosity should be characterised, and argues that it is beneficial in counteract some of the negative effects of the reward structure of mathematics.
- 1
- 2
Comment (from this Blueprint): In this paper, Andersen et al. track the genesis of a maths research paper written in collaboration between a PhD student and his supervisor. They track changes made to sequential drafts and interview the two authors about the motivations for them, and show how the edits are designed to engage the reader in a mathematical narrative on one level, and prepare the paper for different types of validation on another level.