
Expand entry

Added by: Fenner Stanley TanswellAbstract:
We present a case study of how mathematicians write for mathematicians. We have conducted interviews with two research mathematicians, the talented PhD student Adam and his experienced supervisor Thomas, about a research paper they wrote together. Over the course of 2 years, Adam and Thomas revised Adam’s very detailed first draft. At the beginning of this collaboration, Adam was very knowledgeable about the subject of the paper and had good presentational skills but, as a new PhD student, did not yet have experience writing research papers for mathematicians. Thus, one main purpose of revising the paper was to make it take into account the intended audience. For this reason, the changes made to the initial draft and the authors’ purpose in making them provide a window for viewing how mathematicians write for mathematicians. We examined how their paper attracts the interest of the reader and prepares their proofs for validation by the reader. Among other findings, we found that their paper prepares the proofs for two types of validation that the reader can easily switch between.
Comment (from this Blueprint): In this paper, Andersen et al. track the genesis of a maths research paper written in collaboration between a PhD student and his supervisor. They track changes made to sequential drafts and interview the two authors about the motivations for them, and show how the edits are designed to engage the reader in a mathematical narrative on one level, and prepare the paper for different types of validation on another level.

Expand entry

Added by: Fenner Stanley TanswellAbstract: Mathematicians appear to have quite high standards for when they will rely on testimony. Many mathematicians require that a number of experts testify that they have checked the proof of a result p before they will rely on p in their own proofs without checking the proof of p. We examine why this is. We argue that for each expert who testifies that she has checked the proof of p and found no errors, the likelihood that the proof contains no substantial errors increases because different experts will validate the proof in different ways depending on their background knowledge and individual preferences. If this is correct, there is much to be gained for a mathematician from requiring that a number of experts have checked the proof of p before she will rely on p in her own proofs without checking the proof of p. In this way a mathematician can protect her own work and the work of others from errors. Our argument thus provides an explanation for mathematicians’ attitude towards relying on testimony.Comment (from this Blueprint): The orthodox picture of mathematical knowledge is so individualistic that it often leaves out the mathematician themselves. In this piece, Andersen et al. look at what role testimony plays in mathematical knowledge. They thereby emphasise social features of mathematical proofs, and why this can play an important role in deciding which results to trust in the maths literature.

Expand entry

Added by: Fenner Stanley TanswellAbstract: This chapter is based on the talk that I gave in August 2018 at the ICM in Rio de Janeiro at the panel on The Gender Gap in Mathematical and Natural Sciences from a Historical Perspective. It provides some examples of the challenges and prejudices faced by women mathematicians during last two hundred and fifty years. I make no claim for completeness but hope that the examples will help to shed light on some of the problems many women mathematicians still face today.Comment (from this Blueprint): BarrowGreen is a historian of mathematics. In this paper she documents some of the challenges that women faced in mathematics over the last 250 years, discussing many famous women mathematicians and the prejudices and injustices they faced.

Expand entry

Added by: Fenner Stanley TanswellAbstract: This article discusses the role of diagrams in mathematical reasoning in the light of a case study in analysis. In the example presented certain combinatorial expressions were first found by using diagrams. In the published proofs the pictures were replaced by reasoning about permutation groups. This article argues that, even though the diagrams are not present in the published papers, they still play a role in the formulation of the proofs. It is shown that they play a role in concept formation as well as representations of proofs. In addition we note that 'visualization' is used in two different ways. In the first sense 'visualization' denotes our inner mental pictures, which enable us to see that a certain fact holds, whereas in the other sense 'visualization' denotes a diagram or representation of something.Comment (from this Blueprint): In this paper, Carter discusses a case study from free probability theory in which diagrams were used to inspire definitions and proof strategies. Interestingly, the diagrams were not present in the published results making them dispensable in one sense, but Carter argues that they are essential in the sense that their discovery relied on the visualisation supplied by the diagrams.

Expand entry

Added by: Fenner Stanley TanswellAbstract:
A source of tension between Philosophers of Mathematics and Mathematicians is the fact that each group feels ignored by the other; daily mathematical practice seems barely affected by the questions the Philosophers are considering. In this talk I will describe an issue that does have an impact on mathematical practice, and a philosophical stance on mathematics that is detectable in the work of practising mathematicians. No doubt controversially, I will call this issue ‘morality’, but the term is not of my coining: there are mathematicians across the world who use the word ‘morally’ to great effect in private, and I propose that there should be a public theory of what they mean by this. The issue arises because proofs, despite being revered as the backbone of mathematical truth, often contribute very little to a mathematician’s understanding. ‘Moral’ considerations, however, contribute a great deal. I will first describe what these ‘moral’ considerations might be, and why mathematicians have appropriated the word ‘morality’ for this notion. However, not all mathematicians are concerned with such notions, and I will give a characterisation of ‘moralist’ mathematics and ‘moralist’ mathematicians, and discuss the development of ‘morality’ in individuals and in mathematics as a whole. Finally, I will propose a theory for standardising or universalising a system of mathematical morality, and discuss how this might help in the development of good mathematics.
Comment (from this Blueprint): Cheng is a mathematician working in Category Theory. In this article she complains about traditional philosophy of mathematics that it has no bearing on real mathematics. Instead, she proposes a system of “mathematical morality” about the normative intuitions mathematicians have about how it ought to be.

Expand entry

Added by: Fenner Stanley TanswellAbstract: The aim of this article is to investigate speciﬁc aspects connected with visualization in the practice of a mathematical subﬁeld: lowdimensional topology. Through a case study, it will be established that visualization can play an epistemic role. The background assumption is that the consideration of the actual practice of mathematics is relevant to address epistemological issues. It will be shown that in lowdimensional topology, justiﬁcations can be based on sequences of pictures. Three theses will be defended. First, the representations used in the practice are an integral part of the mathematical reasoning. As a matter of fact, they convey in a material form the relevant transitions and thus allow experts to draw inferential connections. Second, in lowdimensional topology experts exploit a particular type of manipulative imagination which is connected to intuition of two and threedimensional space and motor agency. This imagination allows recognizing the transformations which connect diﬀerent pictures in an argument. Third, the epistemic—and inferential—actions performed are permissible only within a speciﬁc practice: this form of reasoning is subjectmatter dependent. Local criteria of validity are established to assure the soundness of representationally heterogeneous arguments in lowdimensional topology.Comment (from this Blueprint): De Toffoli and Giardino look at proof practices in lowdimensional topology, and especially a proof by Rolfsen that relies on epistemic actions on a diagrammatic representation. They make the case that the many diagrams are used to trigger our manipulative imagination to make inferential moves which cannot be reduced to formal statements without loss of intuition.

Expand entry

Added by: Fenner Stanley TanswellAbstract: According to the received view, genuine mathematical justification derives from proofs. In this article, I challenge this view. First, I sketch a notion of proof that cannot be reduced to deduction from the axioms but rather is tailored to human agents. Secondly, I identify a tension between the received view and mathematical practice. In some cases, cognitively diligent, wellfunctioning mathematicians go wrong. In these cases, it is plausible to think that proof sets the bar for justification too high. I then propose a fallibilist account of mathematical justification. I show that the main function of mathematical justification is to guarantee that the mathematical community can correct the errors that inevitably arise from our fallible practices.Comment (from this Blueprint): De Toffoli makes a strong case for the importance of mathematical practice in addressing important issues about mathematics. In this paper, she looks at proof and justification, with an emphasis on the fact that mathematicians are fallible. With this in mind, she argues that there are circumstances under which we can have mathematical justification, despite a possibility of being wrong. This paper touches on many cases and questions that will reappear later across the Blueprint, such as collaboration, testimony, computer proofs, and diagrams.

Expand entry

Added by: Fenner Stanley TanswellAbstract: In this paper we first explore how Wittgenstein’s philosophy provides a conceptual tools to discuss the possibility of the simultaneous existence of culturally different mathematical practices. We will argue that Wittgenstein’s later work will be a fruitful framework to serve as a philosophical background to investigate ethnomathematics (Wittgenstein 1973). We will give an overview of Wittgenstein’s later work which is referred to by many researchers in the field of ethnomathematics. The central philosophical investigation concerns Wittgenstein’s shift to abandoning the essentialist concept of language and therefore denying the existence of a universal language. Languages—or ‘language games’ as Wittgenstein calls them—are immersed in a form of life, in a cultural or social formation and are embedded in the totality of communal activities. This gives rise to the idea of rationality as an invention or as a construct that emerges in specific local contexts. In the second part of the paper we introduce, analyse and compare the mathematical aspects of two activities known as string figuremaking and sand drawing, to illustrate Wittgenstein’s ideas. Based on an ethnomathematical comparative analysis, we will argue that there is evidence of invariant and distinguishing features of a mathematical rationality, as expressed in both string figuremaking and sand drawing practices, from one society to another. Finally, we suggest that a philosophicalanthropological approach to mathematical practices may allow us to better understand the interrelations between mathematics and cultures. Philosophical investigations may help the reflection on the possibility of culturally determined ethnomathematics, while an anthropological approach, using ethnographical methods, may afford new materials for the analysis of ethnomathematics and its links to the cultural context. This combined approach will help us to better characterize mathematical practices in both sociological and epistemological terms.Comment (from this Blueprint): Francois and Vandendriessche here present a later Wittgensteinian approach to “ethnomathematics”: mathematics practiced outside of mainstream Western contexts, often focused on indigenous or tribal groups. They focus on two case studies, stringfigure making and sanddrawing, in different geographic and cultural contexts, looking at how these practices are mathematical.

Expand entry

Added by: Fenner Stanley TanswellAbstract: In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice. In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the distinction between formal and informal proofs, visualization and artefacts, mathematical explanation and understanding, value judgments, and mathematical design. We conclude with some remarks on the potential connections between the philosophy of mathematical practice and mathematics education.Comment (from this Blueprint): While this paper by Hamami & Morris is not a necessary reading, it provides a fairly broad overview of the practical turn in mathematics. Since it was aimed at mathematics educators, it is a very accessible piece, and provides useful directions to further reading beyond what is included in this blueprint.

Expand entry

Added by: Fenner Stanley TanswellAbstract: The highest level of mathematics has traditionally been seen as a solitary endeavour, to produce a proof for review and acceptance by research peers. Mathematics is now at a remarkable inflexion point, with new technology radically extending the power and limits of individuals. Crowdsourcing pulls together diverse experts to solve problems; symbolic computation tackles huge routine calculations; and computers check proofs too long and complicated for humans to comprehend. The Study of Mathematical Practice is an emerging interdisciplinary field which draws on philosophy and social science to understand how mathematics is produced. Online mathematical activity provides a novel and rich source of data for empirical investigation of mathematical practice  for example the community questionanswering system mathoverflow contains around 40,000 mathematical conversations, and polymath collaborations provide transcripts of the process of discovering proofs. Our preliminary investigations have demonstrated the importance of “soft” aspects such as analogy and creativity, alongside deduction and proof, in the production of mathematics, and have given us new ways to think about the roles of people and machines in creating new mathematical knowledge. We discuss further investigation of these resources and what it might reveal. Crowdsourced mathematical activity is an example of a “social machine”, a new paradigm, identified by BernersLee, for viewing a combination of people and computers as a single problemsolving entity, and the subject of major international research endeavours. We outline a future research agenda for mathematics social machines, a combination of people, computers, and mathematical archives to create and apply mathematics, with the potential to change the way people do mathematics, and to transform the reach, pace, and impact of mathematics research.Comment (from this Blueprint): In this paper, Martin and Pease look at how mathematics happens online, emphasising how this embodies the picture of mathematics given by Polya and Lakatos, two central figures in philosophy of mathematical practice. They look at multiple venues of online mathematics, including the polymath projects of collaborative problemsolving, and mathoverflow, which is a questionandanswer forum. By looking at the discussions that take place when people are doing maths online, they argue that you can get rich new kinds of data about the processes of mathematical discovery and understanding. They discuss how online mathematics can become a “social machine”, and how this can open up new ways of doing mathematics.

Expand entry

Added by: Fenner Stanley TanswellAbstract: The low visibility and specialised languages of mathematical work pose challenges for the ethnographic study of communication in mathematics, but observationbased study can offer a realworld grounding to questions about the nature of its methods. This paper uses theoretical ideas from linguistic pragmatics to examine how mutual understandings of diagrams are achieved in the course of conference presentations. Presenters use shared knowledge to train others to interpret diagrams in the ways favoured by the community of experts, directing an audience’s attention so as to develop a shared understanding of a diagram’s features and possible manipulations. In this way, expectations about the intentions of others and appeals to knowledge about the manipulation of objects play a part in the development and communication of concepts in mathematical discourse.Comment (from this Blueprint): McCallum is an ethnographer and artist, who in this piece explores the way in which mathematicians use diagrams in conference presentations, especially in knot theory. She emphasises that there are a large number of ways that diagrams can facilitate communication and understanding. The diagrams are dynamic in many way, and she shows how the way in which a speaker interacts with the diagram (through drawing, erasing, labelling, positioning, emphasising etc.) is part of explaining the mathematics it represents.

Expand entry

Added by: Fenner Stanley TanswellAbstract: The story of a team of female AfricanAmerican mathematicians who served a vital role in NASA during the early years of the U.S. space program.Comment (from this Blueprint): This film depicts a historical biopic of African American female mathematicians working at NASA in the 1960s, focusing on the story of Katherine Johnson. In it, the plot depicts struggles with racism and sexism, as well as the impacts of the move from human calculation to the use of computers.

Expand entry

Added by: Fenner Stanley TanswellAbstract: Despite increasing rates of women researching in mathintensive fields, publications by female authors remain underrepresented. By analyzing millions of records from the dedicated bibliographic databases zbMATH, arXiv, and ADS, we unveil the chronological evolution of authorships by women in mathematics, physics, and astronomy. We observe a pronounced shortage of female authors in topranked journals, with quasistagnant figures in various distinguished periodicals in the first two disciplines and a significantly more equitable situation in the latter. Additionally, we provide an interactive openaccess web interface to further examine the data. To address whether female scholars submit fewer articles for publication to relevant journals or whether they are consciously or unconsciously disadvantaged by the peer review system, we also study authors’ perceptions of their submission practices and analyze around 10,000 responses, collected as part of a recent global survey of scientists. Our analysis indicates that men and women perceive their submission practices to be similar, with no evidence that a significantly lower number of submissions by women is responsible for their underrepresentation in topranked journals. According to the selfreported responses, a larger number of articles submitted to prestigious venues correlates rather with aspects associated with pronounced research activity, a wellestablished network, and academic seniority.Comment (from this Blueprint): Mihaljević and Santamaría here use largescale quantitative research methods to investigate the gender gap in contemporary mathematics. I’ve recommended reading the introduction and conclusion in order to see what they were doing and what they found out, but the rest of the paper is worth looking at if you want more detailed methods and results.

Expand entry

Added by: Fenner Stanley TanswellAbstract: Prominent mathematician William Thurston was praised by other mathematicians for his intellectual generosity. But what does it mean to say Thurston was intellectually generous? And is being intellectually generous beneficial? To answer these questions I turn to virtue epistemology and, in particular, Roberts and Wood's (2007) analysis of intellectual generosity. By appealing to Thurston's own writings and interviewing mathematicians who knew and worked with him, I argue that Roberts and Wood's analysis nicely captures the sense in which he was intellectually generous. I then argue that intellectual generosity is beneficial because it counteracts negative effects of the reward structure of mathematics that can stymie mathematical progress.Comment (from this Blueprint): In this paper, Morris looks at ascriptions of intellectual generosity in mathematics, focusing on the mathematician William Thurston. She looks at how generosity should be characterised, and argues that it is beneficial in counteract some of the negative effects of the reward structure of mathematics.

Expand entry

Added by: Fenner Stanley TanswellAbstract:
We investigate the truth conditions of knowledge ascriptions for the case of mathematical knowledge. The availability of a formalizable mathematical proof appears to be a natural criterion:
(*) X knows that p is true iff X has available a formalizable proof of p.
Yet, formalizability plays no major role in actual mathematical practice. We present results of an empirical study, which suggest that certain readings of (*) are not necessarily employed by mathematicians when ascribing knowledge. Further, we argue that the concept of mathematical knowledge underlying the actual use of “to know” in mathematical practice is compatible with certain philosophical intuitions, but seems to differ from philosophical knowledge conceptions underlying (*).
Comment (from this Blueprint): MüllerHill is interested in the question of when mathematicians have mathematical knowledge and to what extent it relies on the formalisability of proofs. In this paper, she undertakes an empirical investigation of mathematicians’ views of when mathematicians know a theorem is true. Amazingly, while they say that they believe proofs have an exact definition and that the standards of knowledge are invariant, when presented with various toy scenarios, their judgements seem to suggest systematic contextsensitivity of a number of factors.
 1
 2