-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
Mathematicians appear to have quite high standards for when they will rely on testimony. Many mathematicians require that a number of experts testify that they have checked the proof of a result p before they will rely on p in their own proofs without checking the proof of p. We examine why this is. We argue that for each expert who testifies that she has checked the proof of p and found no errors, the likelihood that the proof contains no substantial errors increases because different experts will validate the proof in different ways depending on their background knowledge and individual preferences. If this is correct, there is much to be gained for a mathematician from requiring that a number of experts have checked the proof of p before she will rely on p in her own proofs without checking the proof of p. In this way a mathematician can protect her own work and the work of others from errors. Our argument thus provides an explanation for mathematicians’ attitude towards relying on testimony.Comment (from this Blueprint): The orthodox picture of mathematical knowledge is so individualistic that it often leaves out the mathematician themselves. In this piece, Andersen et al. look at what role testimony plays in mathematical knowledge. They thereby emphasise social features of mathematical proofs, and why this can play an important role in deciding which results to trust in the maths literature.Andersen, Line Edslev, Johansen, Mikkel Willum, Kragh Sørensen, Henrik. Mathematicians Writing for Mathematicians2021, Synthese, 198(26): 6233-6250.-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
We present a case study of how mathematicians write for mathematicians. We have conducted interviews with two research mathematicians, the talented PhD student Adam and his experienced supervisor Thomas, about a research paper they wrote together. Over the course of 2 years, Adam and Thomas revised Adam’s very detailed first draft. At the beginning of this collaboration, Adam was very knowledgeable about the subject of the paper and had good presentational skills but, as a new PhD student, did not yet have experience writing research papers for mathematicians. Thus, one main purpose of revising the paper was to make it take into account the intended audience. For this reason, the changes made to the initial draft and the authors’ purpose in making them provide a window for viewing how mathematicians write for mathematicians. We examined how their paper attracts the interest of the reader and prepares their proofs for validation by the reader. Among other findings, we found that their paper prepares the proofs for two types of validation that the reader can easily switch between.
Comment (from this Blueprint): In this paper, Andersen et al. track the genesis of a maths research paper written in collaboration between a PhD student and his supervisor. They track changes made to sequential drafts and interview the two authors about the motivations for them, and show how the edits are designed to engage the reader in a mathematical narrative on one level, and prepare the paper for different types of validation on another level.Barrow-Green, June. Historical Context of the Gender Gap in Mathematics2019, in World Women in Mathematics 2018: Proceedings of the First World Meeting for Women in Mathematics, Carolina Araujo et al. (eds.). Springer, Cham.-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
This chapter is based on the talk that I gave in August 2018 at the ICM in Rio de Janeiro at the panel on The Gender Gap in Mathematical and Natural Sciences from a Historical Perspective. It provides some examples of the challenges and prejudices faced by women mathematicians during last two hundred and fifty years. I make no claim for completeness but hope that the examples will help to shed light on some of the problems many women mathematicians still face today.Comment (from this Blueprint): Barrow-Green is a historian of mathematics. In this paper she documents some of the challenges that women faced in mathematics over the last 250 years, discussing many famous women mathematicians and the prejudices and injustices they faced.Carter, Jessica. Diagrams and Proofs in Analysis2010, International Studies in the Philosophy of Science, 24(1): 1-14.-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
This article discusses the role of diagrams in mathematical reasoning in the light of a case study in analysis. In the example presented certain combinatorial expressions were first found by using diagrams. In the published proofs the pictures were replaced by reasoning about permutation groups. This article argues that, even though the diagrams are not present in the published papers, they still play a role in the formulation of the proofs. It is shown that they play a role in concept formation as well as representations of proofs. In addition we note that 'visualization' is used in two different ways. In the first sense 'visualization' denotes our inner mental pictures, which enable us to see that a certain fact holds, whereas in the other sense 'visualization' denotes a diagram or representation of something.Comment (from this Blueprint): In this paper, Carter discusses a case study from free probability theory in which diagrams were used to inspire definitions and proof strategies. Interestingly, the diagrams were not present in the published results making them dispensable in one sense, but Carter argues that they are essential in the sense that their discovery relied on the visualisation supplied by the diagrams.Cheng, Eugenia. Mathematics, Morally2004, Cambridge University Society for the Philosophy of Mathematics.-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
A source of tension between Philosophers of Mathematics and Mathematicians is the fact that each group feels ignored by the other; daily mathematical practice seems barely affected by the questions the Philosophers are considering. In this talk I will describe an issue that does have an impact on mathematical practice, and a philosophical stance on mathematics that is detectable in the work of practising mathematicians. No doubt controversially, I will call this issue ‘morality’, but the term is not of my coining: there are mathematicians across the world who use the word ‘morally’ to great effect in private, and I propose that there should be a public theory of what they mean by this. The issue arises because proofs, despite being revered as the backbone of mathematical truth, often contribute very little to a mathematician’s understanding. ‘Moral’ considerations, however, contribute a great deal. I will first describe what these ‘moral’ considerations might be, and why mathematicians have appropriated the word ‘morality’ for this notion. However, not all mathematicians are concerned with such notions, and I will give a characterisation of ‘moralist’ mathematics and ‘moralist’ mathematicians, and discuss the development of ‘morality’ in individuals and in mathematics as a whole. Finally, I will propose a theory for standardising or universalising a system of mathematical morality, and discuss how this might help in the development of good mathematics.
Comment (from this Blueprint): Cheng is a mathematician working in Category Theory. In this article she complains about traditional philosophy of mathematics that it has no bearing on real mathematics. Instead, she proposes a system of “mathematical morality” about the normative intuitions mathematicians have about how it ought to be.De Toffoli, Silvia. Groundwork for a Fallibilist Account of Mathematics2021, The Philosophical Quarterly, 71(4).-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
According to the received view, genuine mathematical justification derives from proofs. In this article, I challenge this view. First, I sketch a notion of proof that cannot be reduced to deduction from the axioms but rather is tailored to human agents. Secondly, I identify a tension between the received view and mathematical practice. In some cases, cognitively diligent, well-functioning mathematicians go wrong. In these cases, it is plausible to think that proof sets the bar for justification too high. I then propose a fallibilist account of mathematical justification. I show that the main function of mathematical justification is to guarantee that the mathematical community can correct the errors that inevitably arise from our fallible practices.Comment (from this Blueprint): De Toffoli makes a strong case for the importance of mathematical practice in addressing important issues about mathematics. In this paper, she looks at proof and justification, with an emphasis on the fact that mathematicians are fallible. With this in mind, she argues that there are circumstances under which we can have mathematical justification, despite a possibility of being wrong. This paper touches on many cases and questions that will reappear later across the Blueprint, such as collaboration, testimony, computer proofs, and diagrams.De Toffoli, Silvia, Giardino, Valeria. An Inquiry into the Practice of Proving in Low-Dimensional Topology2015, in From Logic to Practice, Gabriele Lolli, Giorgio Venturi and Marco Panza (eds.). Springer International Publishing.-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
The aim of this article is to investigate specific aspects connected with visualization in the practice of a mathematical subfield: low-dimensional topology. Through a case study, it will be established that visualization can play an epistemic role. The background assumption is that the consideration of the actual practice of mathematics is relevant to address epistemological issues. It will be shown that in low-dimensional topology, justifications can be based on sequences of pictures. Three theses will be defended. First, the representations used in the practice are an integral part of the mathematical reasoning. As a matter of fact, they convey in a material form the relevant transitions and thus allow experts to draw inferential connections. Second, in low-dimensional topology experts exploit a particular type of manipulative imagination which is connected to intuition of two- and three-dimensional space and motor agency. This imagination allows recognizing the transformations which connect different pictures in an argument. Third, the epistemic—and inferential—actions performed are permissible only within a specific practice: this form of reasoning is subject-matter dependent. Local criteria of validity are established to assure the soundness of representationally heterogeneous arguments in low-dimensional topology.Comment (from this Blueprint): De Toffoli and Giardino look at proof practices in low-dimensional topology, and especially a proof by Rolfsen that relies on epistemic actions on a diagrammatic representation. They make the case that the many diagrams are used to trigger our manipulative imagination to make inferential moves which cannot be reduced to formal statements without loss of intuition.Francois, Karen, Vandendriessche, Eric. Reassembling Mathematical Practices: a Philosophical-Anthropological Approach2016, Revista Latinoamericana de Etnomatemática Perspectivas Socioculturales de la Educación Matemática, 9(2): 144-167.-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
In this paper we first explore how Wittgenstein’s philosophy provides a conceptual tools to discuss the possibility of the simultaneous existence of culturally different mathematical practices. We will argue that Wittgenstein’s later work will be a fruitful framework to serve as a philosophical background to investigate ethnomathematics (Wittgenstein 1973). We will give an overview of Wittgenstein’s later work which is referred to by many researchers in the field of ethnomathematics. The central philosophical investigation concerns Wittgenstein’s shift to abandoning the essentialist concept of language and therefore denying the existence of a universal language. Languages—or ‘language games’ as Wittgenstein calls them—are immersed in a form of life, in a cultural or social formation and are embedded in the totality of communal activities. This gives rise to the idea of rationality as an invention or as a construct that emerges in specific local contexts. In the second part of the paper we introduce, analyse and compare the mathematical aspects of two activities known as string figure-making and sand drawing, to illustrate Wittgenstein’s ideas. Based on an ethnomathematical comparative analysis, we will argue that there is evidence of invariant and distinguishing features of a mathematical rationality, as expressed in both string figure-making and sand drawing practices, from one society to another. Finally, we suggest that a philosophical-anthropological approach to mathematical practices may allow us to better understand the interrelations between mathematics and cultures. Philosophical investigations may help the reflection on the possibility of culturally determined ethnomathematics, while an anthropological approach, using ethnographical methods, may afford new materials for the analysis of ethnomathematics and its links to the cultural context. This combined approach will help us to better characterize mathematical practices in both sociological and epistemological terms.Comment (from this Blueprint): Francois and Vandendriessche here present a later Wittgensteinian approach to “ethnomathematics”: mathematics practiced outside of mainstream Western contexts, often focused on indigenous or tribal groups. They focus on two case studies, string-figure making and sand-drawing, in different geographic and cultural contexts, looking at how these practices are mathematical.Hamami, Yacin, Morris, Rebecca Lea. Philosophy of mathematical practice: a primer for mathematics educators2020, ZDM, 52(6): 1113-1126.-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice. In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the distinction between formal and informal proofs, visualization and artefacts, mathematical explanation and understanding, value judgments, and mathematical design. We conclude with some remarks on the potential connections between the philosophy of mathematical practice and mathematics education.Comment (from this Blueprint): While this paper by Hamami & Morris is not a necessary reading, it provides a fairly broad overview of the practical turn in mathematics. Since it was aimed at mathematics educators, it is a very accessible piece, and provides useful directions to further reading beyond what is included in this blueprint.Martin, Ursula, Pease, Alison. Mathematical Practice, Crowdsourcing, and Social Machines2013, in Intelligent Computer Mathematics. CICM 2013. Lecture Notes in Computer Sciences, Carette, J. et al. (eds.). Springer.-
Expand entry
-
Added by: Fenner Stanley TanswellAbstract:
The highest level of mathematics has traditionally been seen as a solitary endeavour, to produce a proof for review and acceptance by research peers. Mathematics is now at a remarkable inflexion point, with new technology radically extending the power and limits of individuals. Crowdsourcing pulls together diverse experts to solve problems; symbolic computation tackles huge routine calculations; and computers check proofs too long and complicated for humans to comprehend. The Study of Mathematical Practice is an emerging interdisciplinary field which draws on philosophy and social science to understand how mathematics is produced. Online mathematical activity provides a novel and rich source of data for empirical investigation of mathematical practice - for example the community question-answering system mathoverflow contains around 40,000 mathematical conversations, and polymath collaborations provide transcripts of the process of discovering proofs. Our preliminary investigations have demonstrated the importance of “soft” aspects such as analogy and creativity, alongside deduction and proof, in the production of mathematics, and have given us new ways to think about the roles of people and machines in creating new mathematical knowledge. We discuss further investigation of these resources and what it might reveal. Crowdsourced mathematical activity is an example of a “social machine”, a new paradigm, identified by Berners-Lee, for viewing a combination of people and computers as a single problem-solving entity, and the subject of major international research endeavours. We outline a future research agenda for mathematics social machines, a combination of people, computers, and mathematical archives to create and apply mathematics, with the potential to change the way people do mathematics, and to transform the reach, pace, and impact of mathematics research.Comment (from this Blueprint): In this paper, Martin and Pease look at how mathematics happens online, emphasising how this embodies the picture of mathematics given by Polya and Lakatos, two central figures in philosophy of mathematical practice. They look at multiple venues of online mathematics, including the polymath projects of collaborative problem-solving, and mathoverflow, which is a question-and-answer forum. By looking at the discussions that take place when people are doing maths online, they argue that you can get rich new kinds of data about the processes of mathematical discovery and understanding. They discuss how online mathematics can become a “social machine”, and how this can open up new ways of doing mathematics.- 1
- 2
Can’t find it?Contribute the texts you think should be here and we’ll add them soon!
-
-
-
This site is registered on Toolset.com as a development site. -
-
-
-
-
-
2021, Synthese, 199(1): 859-870.