Full text Blue print
Carter, Jessica. Diagrams and Proofs in Analysis
2010 2010, International Studies in the Philosophy of Science, 24(1): 1-14.
Expand entry
Added by: Fenner Stanley Tanswell
Abstract: This article discusses the role of diagrams in mathematical reasoning in the light of a case study in analysis. In the example presented certain combinatorial expressions were first found by using diagrams. In the published proofs the pictures were replaced by reasoning about permutation groups. This article argues that, even though the diagrams are not present in the published papers, they still play a role in the formulation of the proofs. It is shown that they play a role in concept formation as well as representations of proofs. In addition we note that 'visualization' is used in two different ways. In the first sense 'visualization' denotes our inner mental pictures, which enable us to see that a certain fact holds, whereas in the other sense 'visualization' denotes a diagram or representation of something.

Comment (from this Blueprint): In this paper, Carter discusses a case study from free probability theory in which diagrams were used to inspire definitions and proof strategies. Interestingly, the diagrams were not present in the published results making them dispensable in one sense, but Carter argues that they are essential in the sense that their discovery relied on the visualisation supplied by the diagrams.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Facebook Share on LinkedIn Share by Email
Full text Blue print
De Toffoli, Silvia. Groundwork for a Fallibilist Account of Mathematics
2021 2021, The Philosophical Quarterly, 71(4).
Expand entry
Added by: Fenner Stanley Tanswell
Abstract: According to the received view, genuine mathematical justification derives from proofs. In this article, I challenge this view. First, I sketch a notion of proof that cannot be reduced to deduction from the axioms but rather is tailored to human agents. Secondly, I identify a tension between the received view and mathematical practice. In some cases, cognitively diligent, well-functioning mathematicians go wrong. In these cases, it is plausible to think that proof sets the bar for justification too high. I then propose a fallibilist account of mathematical justification. I show that the main function of mathematical justification is to guarantee that the mathematical community can correct the errors that inevitably arise from our fallible practices.

Comment (from this Blueprint): De Toffoli makes a strong case for the importance of mathematical practice in addressing important issues about mathematics. In this paper, she looks at proof and justification, with an emphasis on the fact that mathematicians are fallible. With this in mind, she argues that there are circumstances under which we can have mathematical justification, despite a possibility of being wrong. This paper touches on many cases and questions that will reappear later across the Blueprint, such as collaboration, testimony, computer proofs, and diagrams.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Facebook Share on LinkedIn Share by Email
Full text Read free Blue print
Dick, Stephanie. AfterMath: The Work of Proof in the Age of Human–Machine Collaboration
2011 2011, Isis, 102(3): 494-505.
Expand entry
Added by: Fenner Stanley Tanswell
Abstract: During the 1970s and 1980s, a team of Automated Theorem Proving researchers at the Argonne National Laboratory near Chicago developed the Automated Reasoning Assistant, or AURA, to assist human users in the search for mathematical proofs. The resulting hybrid humans+AURA system developed the capacity to make novel contributions to pure mathematics by very untraditional means. This essay traces how these unconventional contributions were made and made possible through negotiations between the humans and the AURA at Argonne and the transformation in mathematical intuition they produced. At play in these negotiations were experimental practices, nonhumans, and nonmathematical modes of knowing. This story invites an earnest engagement between historians of mathematics and scholars in the history of science and science studies interested in experimental practice, material culture, and the roles of nonhumans in knowledge making.

Comment (from this Blueprint): Dick traces the history of the AURA automated reasoning assistant in the 1970s and 80s, arguing that the introduction of the computer system led to novel contributions to mathematics by unconventional means. Dick’s emphasis is on the AURA system as changing the material culture of mathematics, and thereby leading to collaboration and even negotiations between the mathematicians and the computer system.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Facebook Share on LinkedIn Share by Email
Full text Blue print
Dutilh Novaes, Catarina. The Dialogical Roots of Deduction: Historical, Cognitive, and Philosophical Perspectives on Reasoning
2020 2020, Cambridge University Press.
Expand entry
Added by: Fenner Stanley Tanswell
Publisher’s Note: This comprehensive account of the concept and practices of deduction is the first to bring together perspectives from philosophy, history, psychology and cognitive science, and mathematical practice. Catarina Dutilh Novaes draws on all of these perspectives to argue for an overarching conceptualization of deduction as a dialogical practice: deduction has dialogical roots, and these dialogical roots are still largely present both in theories and in practices of deduction. Dutilh Novaes' account also highlights the deeply human and in fact social nature of deduction, as embedded in actual human practices; as such, it presents a highly innovative account of deduction. The book will be of interest to a wide range of readers, from advanced students to senior scholars, and from philosophers to mathematicians and cognitive scientists.

Comment (from this Blueprint): This book by Dutilh Novaes recently won the coveted Lakatos Award. In it, she develops a dialogical account of deduction, where she argues that deduction is implicitly dialogical. Proofs represent dialogues between Prover, who is aiming to establish the theorem, and Skeptic, who is trying to block the theorem. However, the dialogue is both partially adversarial (the two characters have opposite goals) and partially cooperative: the Skeptic’s objections make sure that the Prover must make their proof clear, convincing, and correct. In this chapter, Dutilh Novaes applies her model to mathematical practice, and looks at the way social features of maths embody the Prover-Skeptic dialogical model.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Facebook Share on LinkedIn Share by Email
Full text Read free Blue print
Müller-Hill, Eva. Formalizability and Knowledge Ascriptions in Mathematical Practice
2009 2009, Philosophia Scientiæ. Travaux d'histoire et de philosophie des sciences, (13-2): 21-43.
Expand entry
Added by: Fenner Stanley Tanswell
Abstract:

We investigate the truth conditions of knowledge ascriptions for the case of mathematical knowledge. The availability of a formalizable mathematical proof appears to be a natural criterion:

(*) X knows that p is true iff X has available a formalizable proof of p.

Yet, formalizability plays no major role in actual mathematical practice. We present results of an empirical study, which suggest that certain readings of (*) are not necessarily employed by mathematicians when ascribing knowledge. Further, we argue that the concept of mathematical knowledge underlying the actual use of “to know” in mathematical practice is compatible with certain philosophical intuitions, but seems to differ from philosophical knowledge conceptions underlying (*).

Comment (from this Blueprint): Müller-Hill is interested in the question of when mathematicians have mathematical knowledge and to what extent it relies on the formalisability of proofs. In this paper, she undertakes an empirical investigation of mathematicians’ views of when mathematicians know a theorem is true. Amazingly, while they say that they believe proofs have an exact definition and that the standards of knowledge are invariant, when presented with various toy scenarios, their judgements seem to suggest systematic context-sensitivity of a number of factors.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Facebook Share on LinkedIn Share by Email
Full text Read free Blue print
Secco, Gisele Dalva, Pereira, Luiz Carlos. Proofs Versus Experiments: Wittgensteinian Themes Surrounding the Four-Color Theorem
2017 2017, in How Colours Matter to Philosophy, Marcos Silva (ed.). Springer, Cham.
Expand entry
Added by: Fenner Stanley Tanswell
Abstract: The Four-Colour Theorem (4CT) proof, presented to the mathematical community in a pair of papers by Appel and Haken in the late 1970's, provoked a series of philosophical debates. Many conceptual points of these disputes still require some elucidation. After a brief presentation of the main ideas of Appel and Haken’s procedure for the proof and a reconstruction of Thomas Tymoczko’s argument for the novelty of 4CT’s proof, we shall formulate some questions regarding the connections between the points raised by Tymoczko and some Wittgensteinian topics in the philosophy of mathematics such as the importance of the surveyability as a criterion for distinguishing mathematical proofs from empirical experiments. Our aim is to show that the “characteristic Wittgensteinian invention” (Mühlhölzer 2006) – the strong distinction between proofs and experiments – can shed some light in the conceptual confusions surrounding the Four-Colour Theorem.

Comment (from this Blueprint): Secco and Pereira discuss the famous proof of the Four Colour Theorem, which involved the essential use of a computer to check a huge number of combinations. They look at whether this constitutes a real proof or whether it is more akin to a mathematical experiment, a distinction that they draw from Wittgenstein.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Facebook Share on LinkedIn Share by Email
Full text Blue print
Shulman, Bonnie. What If We Change Our Axioms? A Feminist Inquiry into the Foundations of Mathematics
1996 1996, Configurations, 4 (3): 427-451
Expand entry
Added by: Franci Mangraviti and Viviane Fairbank

From the Introduction: "Modern mathematics is based on the axiomatic method. We choose axioms and a deductive system---rules for deducing theorems from the axioms. This methodology is designed to guarantee that we can proceed from "obviously" true premises to true conclusions, via inferences which are "obviously" truth-preserving. [...] New and interesting questions arise if we give up as myth the claim that our theorizing can ever be separated out from the complex dynamic of interwoven social/political/historical/cultural forces that shape our experiences and views. Considering mathematics as a set of stories produced according to strict rules one can read these stories for what they tell us about the very real human desires, ambitions, and values of the authors (who understands) and listen to the authors as spokespersons for their cultures (where and when). This paper is the self-respective and self-conscious attempt of a mathematician to retell a story of mathematics that attends to the relationships between who we are and what we know."

Comment: available in this Blueprint

Share on Facebook Share on LinkedIn Share by Email
Can’t find it?
Contribute the texts you think should be here and we’ll add them soon!