Full text Read free See used
Akins, Kathleen, , . A bat without qualities?
1993, In Martin Davies & Glyn W. Humphreys (eds.), Consciousness: Psychological and Philosophical Essays. Blackwell. pp. 345–358.
Expand entry
Added by: Clotilde Torregrossa, Contributed by: Simon Fokt

Abstract: Discusses the alleged elusiveness of phenomenal consciousness / argues . . . that there is no way of telling ahead of time just what science will reveal to us / if we start from the thought that science can shed some light upon an alien point of view, we may well find ourselves with the intuition, nevertheless, that there is something that science must leave out / perhaps science can reveal the shape or structure of experience, but it leaves out the tone or shading / perhaps science can make plain to us the representational properties of experience, but it is silent about the phenomenal feel argues that this intuition . . . is to be resisted because it rests upon the flawed idea that we can separate the qualitative from the representational aspects of experience: the idea that it makes sense to try to imagine an experience that is qualitatively just like the visual experience that I am having now, but represents quite different objects and properties in the world

Comment: [This is a stub entry. Please add your comments to help us expand it]

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options
Full text Read free See used
Alexandrova, Anna, , . Making Models Count
2008, Philosophy of Science 75(3): 383-404.
Expand entry
Added by: Nick Novelli, Contributed by:

Abstract: What sort of claims do scientific models make and how do these claims then underwrite empirical successes such as explanations and reliable policy interventions? In this paper I propose answers to these questions for the class of models used throughout the social and biological sciences, namely idealized deductive ones with a causal interpretation. I argue that the two main existing accounts misrepresent how these models are actually used, and propose a new account.

Comment: A good exploration of the role of models in scientific practice. Provides a good overview of the main theories about models, and some objections to them, before suggesting an alternative. Good use of concrete examples, presented very clearly. Suitable for undergraduate teaching. Would form a useful part of an examination of modelling in philosophy of science.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options
Full text Read free See used
Bechtel, William P., , Jennifer Mundale. Multiple realizability revisited: Linking cognitive and neural states
1999, Philosophy of Science 66 (2): 175-207.
Expand entry
Added by: Nick Novelli, Contributed by:

Abstract: The claim of the multiple realizability of mental states by brain states has been a major feature of the dominant philosophy of mind of the late 20th century. The claim is usually motivated by evidence that mental states are multiply realized, both within humans and between humans and other species. We challenge this contention by focusing on how neuroscientists differentiate brain areas. The fact that they rely centrally on psychological measures in mapping the brain and do so in a comparative fashion undercuts the likelihood that, at least within organic life forms, we are likely to find cases of multiply realized psychological functions.

Comment: One of the better arguments against multiple realizability. Could be used in any philosophy of mind course where that claim arises as a demonstration of how it could be challenged. A good deal of discussion about neuroscientific practices and methods, but not excessively technical.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options
Full text Read free See used
Boden, Margaret A., , . Intentionality and physical systems
1970, Philosophy of Science 32 (June):200-214.
Expand entry
Added by: Clotilde Torregrossa, Contributed by: Simon Fokt

Abstract: Intentionality is characteristic of many psychological phenomena. It is commonly held by philosophers that intentionality cannot be ascribed to purely physical systems. This view does not merely deny that psychological language can be reduced to physiological language. It also claims that the appropriateness of some psychological explanation excludes the possibility of any underlying physiological or causal account adequate to explain intentional behavior. This is a thesis which I do not accept. I shall argue that physical systems of a specific sort will show the characteristic features of intentionality. Psychological subjects are, under an alternative description, purely physical systems of a certain sort. The intentional description and the physical description are logically distinct, and are not intertranslatable. Nevertheless, the features of intentionality may be explained by a purely causal account, in the sense that they may be shown to be totally dependent upon physical processes.

Comment: [This is a stub entry. Please add your comments to help us expand it]

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options
Full text Read free See used
Cartwright, Nancy, , . The Truth Doesn’t Explain Much
1980, American Philosophical Quarterly 17(2): 159 – 163.
Expand entry
Added by: Nick Novelli, Contributed by:

Summary: It has sometimes been argued that the covering law model in philosophy of science is too permissive about what gets to count as an explanation. This paper, by contrast, argues that it lets in too little, since there are far too few covering laws to account for all of our explanations. In fact, we rely on ceteris paribus laws that are literally false. Though these are not a true description of nature, they do a good job of allowing us to explain phenomena, so we should be careful to keep those two functions of science separate.

Comment: This relatively brief article offers a good illustration of how, contrary to some preconceptions, science does not always aim at absolute or universal truths, and instead allows pragmatic considerations to play a large role. Useful as part of an examination of what scientific laws really are and what their role is.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options
Full text Read free See used
Chang, Hasok, , . Inventing Temperature: Measurement and Scientific Progress
2004, Oxford University Press USA.
Expand entry
Added by: Nick Novelli, Contributed by:

Back Matter: In Inventing Temperature, Chang takes a historical and philosophical approach to examine how scientists were able to use scientific method to test the reliability of thermometers; how they measured temperature beyond the reach of thermometers; and how they came to measure the reliability and accuracy of these instruments without a circular reliance on the instruments themselves. Chang discusses simple epistemic and technical questions about these instruments, which in turn lead to more complex issues about the solutions that were developed.

Comment: A very good practical case study that provides some great insight into a number of philosophocal questions about science. Would make a good inclusion in a history and philosophy of science course.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options
Full text Read free See used
Chang, Hasok, , . The Persistence of Epistemic Objects Through Scientific Change
2011, Erkenntnis 75(3): 413-429.
Expand entry
Added by: Nick Novelli, Contributed by:

Abstract: Why do some epistemic objects persist despite undergoing serious changes, while others go extinct in similar situations? Scientists have often been careless in deciding which epistemic objects to retain and which ones to eliminate; historians and philosophers of science have been on the whole much too unreflective in accepting the scientists’ decisions in this regard. Through a re-examination of the history of oxygen and phlogiston, I will illustrate the benefits to be gained from challenging and disturbing the commonly accepted continuities and discontinuities in the lives of epistemic objects. I will also outline two key consequences of such re-thinking. First, a fresh view on the (dis)continuities in key epistemic objects is apt to lead to informative revisions in recognized periods and trends in the history of science. Second, recognizing sources of continuity leads to a sympathetic view on extinct objects, which in turn problematizes the common monistic tendency in science and philosophy; this epistemological reorientation allows room for more pluralism in scientific practice itself.

Comment: An interesting argument about ontology and scientific practice; would be useful in any philosophy of science course that engages with issues in scientific practice.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options
Full text Read free See used
Churchland, Patricia S., , . Brain-Wise
2002, MIT Press.
Expand entry
Added by: Sara Peppe, Contributed by:

Publisher’s Note: Progress in the neurosciences is profoundly changing our conception of ourselves. Contrary to time-honored intuition, the mind turns out to be a complex of brain functions. And contrary to the wishful thinking of some philosophers, there is no stemming the revolutionary impact that brain research will have on our understanding of how the mind works. Brain-Wise is the sequel to Patricia Smith Churchland’s Neurophilosophy, the book that launched a subfield. In a clear, conversational manner, this book examines old questions about the nature of the mind within the new framework of the brain sciences. What, it asks, is the neurobiological basis of consciousness, the self, and free choice? How does the brain learn about the external world and about its own introspective world? What can neurophilosophy tell us about the basis and significance of religious and moral experiences? Drawing on results from research at the neuronal, neurochemical, system, and whole-brain levels, the book gives an up-to-date perspective on the state of neurophilosophy – what we know, what we do not know, and where things may go from here.

Comment: This book is a very deep and clear work about mind. This latter one is examined considering brain sciences. This book is a good way to familiarise whit the mind-related philosophical debate.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options
Full text Read free See used
Douglas, Heather, , . Inductive Risk and Values in Science
2000, Philosophy of Science 67(4): 559-579.
Expand entry
Added by: Nick Novelli, Contributed by:

Abstract: Although epistemic values have become widely accepted as part of scientific reasoning, non-epistemic values have been largely relegated to the “external” parts of science (the selection of hypotheses, restrictions on methodologies, and the use of scientific technologies). I argue that because of inductive risk, or the risk of error, non-epistemic values are required in science wherever non-epistemic consequences of error should be considered. I use examples from dioxin studies to illustrate how non-epistemic consequences of error can and should be considered in the internal stages of science: choice of methodology, characterization of data, and interpretation of results.

Comment: A good challenge to the “value-free” status of science, interrogating some of the assumptions about scientific methodology. Uses real-world examples effectively. Suitable for undergraduate teaching.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options
Full text Read free See used
Douglas, Heather, , . Science, Policy, and the Value-Free Ideal
2009, University of Pittsburgh Press.
Expand entry
Added by: Simon Fokt, Contributed by: Patricia Rich

Publisher’s Note: The role of science in policymaking has gained unprecedented stature in the United States, raising questions about the place of science and scientific expertise in the democratic process. Some scientists have been given considerable epistemic authority in shaping policy on issues of great moral and cultural significance, and the politicizing of these issues has become highly contentious.

Since World War II, most philosophers of science have purported the concept that science should be “value-free.” In Science, Policy and the Value-Free Ideal, Heather E. Douglas argues that such an ideal is neither adequate nor desirable for science. She contends that the moral responsibilities of scientists require the consideration of values even at the heart of science. She lobbies for a new ideal in which values serve an essential function throughout scientific inquiry, but where the role values play is constrained at key points, thus protecting the integrity and objectivity of science. In this vein, Douglas outlines a system for the application of values to guide scientists through points of uncertainty fraught with moral valence.

Following a philosophical analysis of the historical background of science advising and the value-free ideal, Douglas defines how values should-and should not-function in science. She discusses the distinctive direct and indirect roles for values in reasoning, and outlines seven senses of objectivity, showing how each can be employed to determine the reliability of scientific claims. Douglas then uses these philosophical insights to clarify the distinction between junk science and sound science to be used in policymaking. In conclusion, she calls for greater openness on the values utilized in policymaking, and more public participation in the policymaking process, by suggesting various models for effective use of both the public and experts in key risk assessments.

Comment: Chapter 5, ‘The structure of values in science’, is a good introduction to the topic of the role of values in science, while defending a particular perspective. Basic familiarity with philosophy of science or science itself should be enough to understand and engage with it.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options
Full text Read free See used
Egan, Frances, , . Folk psychology and cognitive architecture
1995, Philosophy of Science 62(2): 179-96.
Expand entry
Added by: Nick Novelli, Contributed by:

Abstract: It has recently been argued that the success of the connectionist program in cognitive science would threaten folk psychology. I articulate and defend a “minimalist” construal of folk psychology that comports well with empirical evidence on the folk understanding of belief and is compatible with even the most radical developments in cognitive science.

Comment: A good defense of folk psychology. Would be a good inclusion in a course on philosophy of mind/philosophy of cognitive science to show that scepticism need not be taken to extremes.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options
Full text Read free See used
Franklin, L. R., , . Exploratory Experiments
2005, Philosophy of Science 72(5): 888-899.
Expand entry
Added by: Nick Novelli, Contributed by:

Abstract: Philosophers of experiment have acknowledged that experiments are often more than mere hypothesis-tests, once thought to be an experiment’s exclusive calling. Drawing on examples from contemporary biology, I make an additional amendment to our understanding of experiment by examining the way that `wide’ instrumentation can, for reasons of efficiency, lead scientists away from traditional hypothesis-directed methods of experimentation and towards exploratory methods.

Comment: Good exploration of the role of experiments, challenging the idea that they are solely useful for testing clearly defined hypotheses. Uses many practical examples, but is very concise and clear. Suitable for undergraduate teaching in an examination of scientific methods in a philosophy of science course.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options
Full text Read free See used
Gendler, Tamar Szabó, , . Galileo and the Indispensability of Scientific Thought Experiment
1998, British Journal for the Philosophy of Science 49 (3):397-424.
Expand entry
Added by: Andrea Blomqvist, Contributed by:

Abstract: By carefully examining one of the most famous thought experiments in the history of science – that by which Galileo is said to have refuted the Aristotelian theory that heavier bodies fall faster than lighter ones – I attempt to show that thought experiments play a distinctive role in scientific inquiry. Reasoning about particular entities within the context of an imaginary scenario can lead to rationally justified concluusions that – given the same initial information – would not be rationally justifiable on the basis of a straightforward argument.

Comment: This paper would be a good to put as further reading in a week focusing on thought experiments. Suitable for a third year module.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options
Full text Read free See used
Lloyd, Elisabeth A., , . The Case of the Female Orgasm: Bias in the Science of Evolution
2007, Hypatia 22 (3):218-222.
Expand entry
Added by: Clotilde Torregrossa, Contributed by: Carl Hoefer

Abstract: Why women evolved to have orgasms – when most of their primate relatives don’t – is a persistent mystery among evolutionary biologists. In pursuing this mystery, Elisabeth Lloyd arrives at another: How could anything as inadequate as the evolutionary explanations of the female orgasm have passed muster as science? A judicious and revealing look at all twenty evolutionary accounts of the trait of human female orgasm, Lloyd’s book is at the same time a case study of how certain biases steer science astray.
Over the past fifteen years, the effect of sexist or male-centered approaches to science has been hotly debated. Drawing especially on data from nonhuman primates and human sexology over eighty years, Lloyd shows what damage such bias does in the study of female orgasm. She also exposes a second pernicious form of bias that permeates the literature on female orgasms: a bias toward adaptationism. Here Lloyd’s critique comes alive, demonstrating how most of the evolutionary accounts either are in conflict with, or lack, certain types of evidence necessary to make their cases – how they simply assume that female orgasm must exist because it helped females in the past reproduce. As she weighs the evidence, Lloyd takes on nearly everyone who has written on the subject: evolutionists, animal behaviorists, and feminists alike. Her clearly and cogently written book is at once a convincing case study of bias in science and a sweeping summary and analysis of what is known about the evolution of the intriguing trait of female orgasm.

Comment: [This is a stub entry. Please add your comments to help us expand it]

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options
Full text Read free See used
Longino, Helen, , . Cognitive and Non-Cognitive Values in Science: Rethinking the Dichotomy
1996, In Feminism, science, and the philosophy of science, Lynn Hankinson Nelson and Jack Nelson (Eds.) (pp. 39-58). Springer, Dordrecht.
Expand entry
Added by: Simon Fokt, Contributed by: Patricia Rich

Abstract: Underdetermination arguments support the conclusion that no amount of empirical data can uniquely determine theory choice. The full content of a theory outreaches those elements of it (the observational elements) that can be shown to be true (or in agreement with actual observations).2 A number of strategies have been developed to minimize the threat such arguments pose to our aspirations to scientific knowledge. I want to focus on one such strategy: the invocation of additional criteria drawn from a pool of cognitive or theoretical values, such as simplicity or gen- erality, to bolster judgements about the worth of models, theories, and hypotheses. What is the status of such criteria? Larry Laudan, in Science and Values, argued that cognitive values could not be treated as self-validating, beyond justification, but are embedded in a three-way reticulational system containing theories, methods, and aims or values, which are involved in mutually supportive relation- ships (Laudan, 1984). My interest in this paper is not the purportedly self- validating nature of cognitive values, but their cognitive nature. Although Laudan rejects the idea that what he calls cognitive values are exempt from rational critic- ism and disagreement, he does seem to think that the reticulational system he identifies is independent of non-cognitive considerations. It is this cognitive/ non-cognitive distinction that I wish to query in this paper. Let me begin by summarizing those of my own views about inquiry in which this worry about the distinction arises.

Comment: This is a useful text discussing values in science, including clear definitions and examples, which also takes a feminist perspective on the application of values. It doesn’t require very special background knowledge, but general familiarity with philosophy of science or science itself would be useful. It could fit in a variety of philosophy of science courses.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options