FiltersNEW

Hold ctrl / ⌘ to select more or unselect

Topics

Languages

Traditions

Times (use negative numbers for BCE)

-

Medium:

Recommended use:

Difficulty:


Full textRead freeBlue print
McCallum, Kate. Untangling Knots: Embodied Diagramming Practices in Knot Theory
2019, Journal of Humanistic Mathematics, 9(1): 178-199.

Expand entry

Added by: Fenner Stanley Tanswell
Abstract:
The low visibility and specialised languages of mathematical work pose challenges for the ethnographic study of communication in mathematics, but observation-based study can offer a real-world grounding to questions about the nature of its methods. This paper uses theoretical ideas from linguistic pragmatics to examine how mutual understandings of diagrams are achieved in the course of conference presentations. Presenters use shared knowledge to train others to interpret diagrams in the ways favoured by the community of experts, directing an audience’s attention so as to develop a shared understanding of a diagram’s features and possible manipulations. In this way, expectations about the intentions of others and appeals to knowledge about the manipulation of objects play a part in the development and communication of concepts in mathematical discourse.
Comment (from this Blueprint): McCallum is an ethnographer and artist, who in this piece explores the way in which mathematicians use diagrams in conference presentations, especially in knot theory. She emphasises that there are a large number of ways that diagrams can facilitate communication and understanding. The diagrams are dynamic in many way, and she shows how the way in which a speaker interacts with the diagram (through drawing, erasing, labelling, positioning, emphasising etc.) is part of explaining the mathematics it represents.
Full textBlue print
Melfi, Theodore. Hidden Figures
2016, [Feature film], 20th Century Fox.

Expand entry

Added by: Fenner Stanley Tanswell
Abstract:
The story of a team of female African-American mathematicians who served a vital role in NASA during the early years of the U.S. space program.
Comment (from this Blueprint): This film depicts a historical biopic of African American female mathematicians working at NASA in the 1960s, focusing on the story of Katherine Johnson. In it, the plot depicts struggles with racism and sexism, as well as the impacts of the move from human calculation to the use of computers.
Full textRead freeBlue print
Mihaljević, Helena, Santamaría, Lucía. Authorship in top-ranked mathematical and physical journals: Role of gender on self-perceptions and bibliographic evidence
2020, Quantitative Science Studies, 1(4): 1468-1492.

Expand entry

Added by: Fenner Stanley Tanswell
Abstract:
Despite increasing rates of women researching in math-intensive fields, publications by female authors remain underrepresented. By analyzing millions of records from the dedicated bibliographic databases zbMATH, arXiv, and ADS, we unveil the chronological evolution of authorships by women in mathematics, physics, and astronomy. We observe a pronounced shortage of female authors in top-ranked journals, with quasistagnant figures in various distinguished periodicals in the first two disciplines and a significantly more equitable situation in the latter. Additionally, we provide an interactive open-access web interface to further examine the data. To address whether female scholars submit fewer articles for publication to relevant journals or whether they are consciously or unconsciously disadvantaged by the peer review system, we also study authors’ perceptions of their submission practices and analyze around 10,000 responses, collected as part of a recent global survey of scientists. Our analysis indicates that men and women perceive their submission practices to be similar, with no evidence that a significantly lower number of submissions by women is responsible for their underrepresentation in top-ranked journals. According to the self-reported responses, a larger number of articles submitted to prestigious venues correlates rather with aspects associated with pronounced research activity, a well-established network, and academic seniority.
Comment (from this Blueprint): Mihaljević and Santamaría here use large-scale quantitative research methods to investigate the gender gap in contemporary mathematics. I’ve recommended reading the introduction and conclusion in order to see what they were doing and what they found out, but the rest of the paper is worth looking at if you want more detailed methods and results.
Full textRead freeBlue print
Morris, Rebecca Lea. Intellectual Generosity and the Reward Structure of Mathematics
2021, Synthese, 199(1): 345-367.

Expand entry

Added by: Fenner Stanley Tanswell
Abstract:
Prominent mathematician William Thurston was praised by other mathematicians for his intellectual generosity. But what does it mean to say Thurston was intellectually generous? And is being intellectually generous beneficial? To answer these questions I turn to virtue epistemology and, in particular, Roberts and Wood's (2007) analysis of intellectual generosity. By appealing to Thurston's own writings and interviewing mathematicians who knew and worked with him, I argue that Roberts and Wood's analysis nicely captures the sense in which he was intellectually generous. I then argue that intellectual generosity is beneficial because it counteracts negative effects of the reward structure of mathematics that can stymie mathematical progress.
Comment (from this Blueprint): In this paper, Morris looks at ascriptions of intellectual generosity in mathematics, focusing on the mathematician William Thurston. She looks at how generosity should be characterised, and argues that it is beneficial in counteract some of the negative effects of the reward structure of mathematics.
Full textRead freeBlue print
Müller-Hill, Eva. Formalizability and Knowledge Ascriptions in Mathematical Practice
2009, Philosophia Scientiæ. Travaux d'histoire et de philosophie des sciences, (13-2): 21-43.

Expand entry

Added by: Fenner Stanley Tanswell
Abstract:

We investigate the truth conditions of knowledge ascriptions for the case of mathematical knowledge. The availability of a formalizable mathematical proof appears to be a natural criterion:

(*) X knows that p is true iff X has available a formalizable proof of p.

Yet, formalizability plays no major role in actual mathematical practice. We present results of an empirical study, which suggest that certain readings of (*) are not necessarily employed by mathematicians when ascribing knowledge. Further, we argue that the concept of mathematical knowledge underlying the actual use of “to know” in mathematical practice is compatible with certain philosophical intuitions, but seems to differ from philosophical knowledge conceptions underlying (*).

Comment (from this Blueprint): Müller-Hill is interested in the question of when mathematicians have mathematical knowledge and to what extent it relies on the formalisability of proofs. In this paper, she undertakes an empirical investigation of mathematicians’ views of when mathematicians know a theorem is true. Amazingly, while they say that they believe proofs have an exact definition and that the standards of knowledge are invariant, when presented with various toy scenarios, their judgements seem to suggest systematic context-sensitivity of a number of factors.
Full textRead freeBlue print
Schattschneider, Doris. Marjorie Rice (16 February 1923–2 July 2017)
2018, Journal of Mathematics and the Arts, 12(1): 51-54.

Expand entry

Added by: Fenner Stanley Tanswell
Abstract:
Marjorie Jeuck Rice, a most unlikely mathematician, died on 2 July 2017 at the age of 94. She was born on 16 February 1923 in St. Petersburg, Florida, and raised on a tiny farm near Roseburg in southern Oregon. There she attended a one-room country school, and there her scientific interests were awakened and nourished by two excellent teachers who recognized her talent. She later wrote, ‘Arithmetic was easy and I liked to discover the reasons behind the methods we used.… I was interested in the colors, patterns, and designs of nature and dreamed of becoming an artist’?
Comment (from this Blueprint): Easwaran discusses the case of Marjorie Rice, an amateur mathematician who discovered new pentagon tilings. This obituary gives some details of her life and the discovery.
Full textRead freeBlue print
Steingart, Alma. A Group Theory of Group Theory: Collaborative Mathematics and the ‘Uninvention’ of a 1000-page Proof
2012, Social Studies of Science, 42(2): 185-213.

Expand entry

Added by: Fenner Stanley Tanswell
Abstract:
Over a period of more than 30 years, more than 100 mathematicians worked on a project to classify mathematical objects known as finite simple groups. The Classification, when officially declared completed in 1981, ranged between 300 and 500 articles and ran somewhere between 5,000 and 10,000 journal pages. Mathematicians have hailed the project as one of the greatest mathematical achievements of the 20th century, and it surpasses, both in scale and scope, any other mathematical proof of the 20th century. The history of the Classification points to the importance of face-to-face interaction and close teaching relationships in the production and transformation of theoretical knowledge. The techniques and methods that governed much of the work in finite simple group theory circulated via personal, often informal, communication, rather than in published proofs. Consequently, the printed proofs that would constitute the Classification Theorem functioned as a sort of shorthand for and formalization of proofs that had already been established during personal interactions among mathematicians. The proof of the Classification was at once both a material artifact and a crystallization of one community’s shared practices, values, histories, and expertise. However, beginning in the 1980s, the original proof of the Classification faced the threat of ‘uninvention’. The papers that constituted it could still be found scattered throughout the mathematical literature, but no one other than the dwindling community of group theorists would know how to find them or how to piece them together. Faced with this problem, finite group theorists resolved to produce a ‘second-generation proof’ to streamline and centralize the Classification. This project highlights that the proof and the community of finite simple groups theorists who produced it were co-constitutive–one formed and reformed by the other.
Comment (from this Blueprint): Steingart is a sociologist who charts the history and sociology of the development of the extremely large and highly collaborative Classification Theorem. She shows that the proof involved a community deciding on shared values, standards of reliability, expertise, and ways of communicating. For example, the community became tolerant of so-called “local errors” so long as these did not put the main result at risk. Furthermore, Steingart discusses how the proof’s text is distributed across a wide number of places and requires expertise to navigate, leaving the proof in danger of uninvention if the experts retire from mathematics.
Full textRead freeBlue print
Tao, Terence. What is good mathematics?
2007, Bulletin of the American Mathematical Society, 44(4): 623-634.

Expand entry

Added by: Fenner Stanley Tanswell
Abstract:
Some personal thoughts and opinions on what “good quality mathematics” is and whether one should try to define this term rigorously. As a case study, the story of Szemer´edi’s theorem is presented.
Comment (from this Blueprint): Tao is a mathematician who has written extensively about mathematics as a discipline. In this piece he considers what counts as “good mathematics”. The opening section that I’ve recommended has a long list of possible meanings of “good mathematics” and considers what this plurality means for mathematics. (The remainder details the history of Szemerédi’s theorem, and argues that good mathematics also involves contributing to a great story of mathematics. However, it gets a bit technical, so only look into it if you’re particularly interested in the details of the case.)
Can’t find it?
Contribute the texts you think should be here and we’ll add them soon!