
Expand entry

Added by: Laura Jimenez, Contributed by:
Abstract: Many solutions have been proposed for solving the problem of macroscopic superpositions of wave function ontology. A possible solution is to assume that, while the wave function provides the complete description of the system, its temporal evolution is not given by the Schroedinger equation. The usual Schroedinger evolution is interrupted by random and sudden “collapses”. The most promising theory of this kind is the GRW theory, named after the scientists that developed it: Gian Carlo Ghirardi, Alberto Rimini and Tullio Weber. It seems tempting to think that in GRW we can take the wave function ontologically seriously and avoid the problem of macroscopic superpositions just allowing for quantum jumps. In this paper it is argued that such “bare” wave function ontology is not possible, neither for GRW nor for any other quantum theory: quantum mechanics cannot be about the wave function simpliciter. All quantum theories should be regarded as theories in which physical objects are constituted by a primitive ontology. The primitive ontology is mathematically represented in the theory by a mathematical entity in threedimensional space, or spacetime.
Comment: This is a very interesting article on the ontology of Quantum Mechanics. It is recommended for advanced courses in Philosophy of Science, especially for modules in the Philosophy of physics. Previous knowledge of Bohmian mechanics and the Many Words Interpretation is necessary. Recommended for postgraduate students.

Expand entry

Added by: Laura Jimenez, Contributed by:
Introduction: Quantum mechanics is, at least at first glance and at least in part, a mathematical machine for predicting the behaviors of microscopic particles – or, at least, of the measuring instruments we use to explore those behaviors – and in that capacity, it is spectacularly successful: in terms of power and precision, head and shoulders above any theory we have ever had. Mathematically, the theory is well understood; we know what its parts are, how they are put together, and why, in the mechanical sense (i.e., in a sense that can be answered by describing the internal grinding of gear against gear), the whole thing performs the way it does, how the information that gets fed in at one end is converted into what comes out the other. The question of what kind of a world it describes, however, is controversial; there is very little agreement, among physicists and among philosophers, about what the world is like according to quantum mechanics. Minimally interpreted, the theory describes a set of facts about the way the microscopic world impinges on the macroscopic one, how it affects our measuring instruments, described in everyday language or the language of classical mechanics. Disagreement centers on the question of what a microscopic world, which affects our apparatuses in the prescribed manner, is, or even could be, like intrinsically; or how those apparatuses could themselves be built out of microscopic parts of the sort the theory describes.
Comment: The paper does not deal with the problem of the interpretation of quantum mechanics, but with the mathematical heart of the theory; the theory in its capacity as a mathematical machine. It is recommendable to read this paper before starting to read anything about the interpretations of the theory. The explanation is very clear and introductory and could serve as an introductory reading for both undergraduate and postgraduate courses in philosophy of science focused on the topic of quantum mechanics. Though clearly written, there is enough mathematics here to potentially put off symbolphobes.