FiltersNEW

Hold ctrl / ⌘ to select more or unselect

Topics

Languages

Traditions

Times (use negative numbers for BCE)

-

Medium:

Recommended use:

Difficulty:


Full text
Massimi, Michela, John Peacock. The origins of the universe: laws, testability and observability in cosmology
2014, in M. Massimi (ed.), Philosophy and the Sciences for Everyone. Routledge.

Expand entry

Added by: Laura Jimenez

Summary: How did our universe form and evolve? Was there really a Big Bang, and what came before it? This chapter takes the reader through the history of contemporary cosmology and looks at how scientists arrived at the current understanding of our universe. It explores the history of astronomy, with the nebular hypothesis back in the eighteenth century, and in more recent times, Einstein's general relativity and the ensuing cosmological models. Finally, it explains the current Standard Model and early universe cosmology as well as the experimental evidence behind it.
Comment : This chapter could be used as an introductory reading to philosophy of cosmology. It provides a general overview of the history of cosmology and of the philosophical problems (laws, uniqueness, observability) that stood in the way of cosmology becoming a science. It is recommendable for undergraduate courses.
Full text
Massimi, Michela, John Peacock. What are dark matter and dark energy?
2014, in M. Massimi (ed.), Philosophy and the Sciences for Everyone. Routledge

Expand entry

Added by: Laura Jimenez

Summary: According to the currently accepted model in cosmology, our universe is made up of 5% of ordinary matter, 25% cold dark matter, and 70% dark energy. But what kind of entities are dark matter and dark energy? This chapter asks what the evidence for these entities is and which rival theories are currently available. This provides with an opportunity to explore a well-known philosophical problem known as under-determination of theory by evidence.
Comment : This Chapter could serve as an introduction to contemporary cosmology and particle physics or as an example to illustrate the problem of under-determination of theory by evidence. The chapter looks at alternative theories that explain the same experimental evidence without recourse to the hypothesis of dark matter and dark energy and discusses the rationale for choosing between rival research programs. Like the rest of the chapters in this book, it is a reading recommendable for undergraduate students. It is recommended to read it after Chapter 2 of the same book.
Full text
Morrison, Margaret. Spin: All is not what it seems
2007, Studies in History and Philosophy of Science Part B 38(3): 529-55.

Expand entry

Added by: Laura Jimenez

Abstract: Spin is typically thought to be a fundamental property of the electron and other elementary particles. Although it is defined as an internal angular momentum much of our understanding of it is bound up with the mathematics of group theory. This paper traces the development of the concept of spin paying particular attention to the way that quantum mechanics has influenced its interpretation in both theoretical and experimental contexts. The received view is that electron spin was discovered experimentally by Stern and Gerlach in 1921, 5 years prior to its theoretical formulation by Goudsmit and Uhlenbeck. However, neither Goudsmit nor Uhlenbeck, nor any others involved in the debate about spin cited the Stern-Gerlach experiment as corroborating evidence. In fact, Bohr and Pauli were emphatic that the spin of a single electron could not be measured in classical experiments. In recent years experiments designed to refute the Bohr-Pauli thesis and measure electron spin have been carried out. However, a number of ambiguities surround these results - ambiguities that relate not only to the measurements themselves but to the interpretation of the experiments. After discussing these various issues the author raises some philosophical questions about the ontological and epistemic status of spin.
Comment : The goal of the paper is to uncover and isolate how spin presents problems for traditional realism and to illustrate the power that theories like quantum mechanics have for shaping both philosophical questions and answers. It is adequate for higher-level postgraduate courses in Philosophy of Science.
Read freeBlue print
Narayanan, Arvind. The Limits of the Quantitative Approach to Discrimination
2022, James Baldwin Lecture Series

Expand entry

Added by: Tomasz Zyglewicz, Shannon Brick, Michael Greer

Introduction: Let’s set the stage. In 2016, ProPublica released a ground-breaking investigation called Machine Bias. You’ve probably heard of it. They examined a criminal risk prediction tool that’s used across the country. These are tools that claim to predict the likelihood that a defendant will reoffend if released, and they are used to inform bail and parole decisions.
Comment (from this Blueprint): This is a written transcript of the James Baldwin lecture, delivered by the computer scientist Arvind Narayanan, at Princeton in 2022. Narayanan's prior research has examined algorithmic bias and standards of fairness with respect to algorithmic decision making. Here, he engages critically with his own discipline, suggesting that there are serious limits to the sorts of quantitative methods that computer scientists recruit to investigate the potential biases in their own tools. Narayanan acknowledges that in voicing this critique, he is echoing claims by feminist researchers from fields beyond computer science. However, his own arguments, centered as they are on the details of the quantitative methods he is at home with, home in on exactly why these prior criticisms hold up in a way that seeks to speak more persuasively to Narayanan's own peers in computer science and other quantitative fields.
Full text
Rochberg, Francesca. Before Nature: Cuneiform Knowledge and the History of Science
2016, Chicago University Press

Expand entry

, Contributed by: Quentin Pharr
Publisher’s Note:
In the modern West, we take for granted that what we call the “natural world” confronts us all and always has—but Before Nature explores that almost unimaginable time when there was no such conception of “nature”—no word, reference, or sense for it. Before the concept of nature formed over the long history of European philosophy and science, our ancestors in ancient Assyria and Babylonia developed an inquiry into the world in a way that is kindred to our modern science. With Before Nature, Francesca Rochberg explores that Assyro-Babylonian knowledge tradition and shows how it relates to the entire history of science. From a modern, Western perspective, a world not conceived somehow within the framework of physical nature is difficult—if not impossible—to imagine. Yet, as Rochberg lays out, ancient investigations of regularity and irregularity, norms and anomalies clearly established an axis of knowledge between the knower and an intelligible, ordered world. Rochberg is the first scholar to make a case for how exactly we can understand cuneiform knowledge, observation, prediction, and explanation in relation to science—without recourse to later ideas of nature. Systematically examining the whole of Mesopotamian science with a distinctive historical and methodological approach, Before Nature will open up surprising new pathways for studying the history of science.
Comment : For students wondering whether or not "philosophy" was done before Socrates and the Pre-Socratics, this text is a fairly comprehensive overview of how ancient Assyro-Babylonians conceived of "nature," their place within it, studied it, and recorded their findings about it. But, more than anything else, this text also shows that ancient Near Eastern cuneiform texts are not to be ignored by budding scholars of ancient philosophy or historians and philosophers of the sciences and their methodologies. Some prior engagement with ancient Greek philosophy, as well as the history and philosophy of science, will help to understand this text.
Full text
Ruetsche,Laura. Interpreting Quantum Theories: The art of the possible
2011, Oxford University Press.

Expand entry

Added by: Laura Jimenez

Publisher's Note: Traditionally, philosophers of quantum mechanics have addressed exceedingly simple systems: a pair of electrons in an entangled state, or an atom and a cat in Dr. Schrodinger's diabolical device. But recently, much more complicated systems, such as quantum fields and the infinite systems at the thermodynamic limit of quantum statistical mechanics, have attracted, and repaid, philosophical attention. Interpreting Quantum Theories has three entangled aims. The first is to guide those familiar with the philosophy of ordinary QM into the philosophy of 'QM infinity', by presenting accessible introductions to relevant technical notions and the foundational questions they frame. The second aim is to develop and defend answers to some of those questions. Does quantum field theory demand or deserve a particle ontology? How (if at all) are different states of broken symmetry different? And what is the proper role of idealizations in working physics? The third aim is to highlight ties between the foundational investigation of QM infinity and philosophy more broadly construed, in particular by using the interpretive problems discussed to motivate new ways to think about the nature of physical possibility and the problem of scientific realism.
Comment : Really interesting book for postgraduate courses involving the study of interpretative theories of Quantum Mechanics. The argument is focused on the quantum theory of systems with infinitely many degrees of freedom. The philosophical approach is defended through careful attention to scientific details.
Full text
Spencer, Quayshawn. Do Newton’s Rules of Reasoning Guarantee Truth … Must They?
2004, Studies in History and Philosophy of Science 35(4): 759-782.

Expand entry

Added by: Nick Novelli

Abstract: Newton's Principia introduces four rules of reasoning for natural philosophy. Although useful, there is a concern about whether Newton's rules guarantee truth. After redirecting the discussion from truth to validity, I show that these rules are valid insofar as they fulfill Goodman's criteria for inductive rules and Newton's own methodological program of experimental philosophy; provided that cross-checks are used prior to applications of rule 4 and immediately after applications of rule 2 the following activities are pursued: (1) research addressing observations that systematically deviate from theoretical idealizations and (2) applications of theory that safeguard ongoing research from proceeding down a garden path.
Comment : A good examination of the relationship of scientific practices to truth, put in a historical context. Would be useful in a history and philosophy of science course.
Can’t find it?
Contribute the texts you think should be here and we’ll add them soon!