Full text Read free
Allori, Valia. On the metaphysics of quantum mechanics
2013, In Soazig Lebihan (ed.), Precis de la Philosophie de la Physique, Vuibert.
Expand entry
Added by: Laura Jimenez
Abstract: Many solutions have been proposed for solving the problem of macroscopic superpositions of wave function ontology. A possible solution is to assume that, while the wave function provides the complete description of the system, its temporal evolution is not given by the Schroedinger equation. The usual Schroedinger evolution is interrupted by random and sudden "collapses". The most promising theory of this kind is the GRW theory, named after the scientists that developed it: Gian Carlo Ghirardi, Alberto Rimini and Tullio Weber. It seems tempting to think that in GRW we can take the wave function ontologically seriously and avoid the problem of macroscopic superpositions just allowing for quantum jumps. In this paper it is argued that such "bare" wave function ontology is not possible, neither for GRW nor for any other quantum theory: quantum mechanics cannot be about the wave function simpliciter. All quantum theories should be regarded as theories in which physical objects are constituted by a primitive ontology. The primitive ontology is mathematically represented in the theory by a mathematical entity in three-dimensional space, or space-time.

Comment: This is a very interesting article on the ontology of Quantum Mechanics. It is recommended for advanced courses in Philosophy of Science, especially for modules in the Philosophy of physics. Previous knowledge of Bohmian mechanics and the Many Words Interpretation is necessary. Recommended for postgraduate students.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Facebook Share on LinkedIn Share by Email
Full text
Allori, Valia. Primitive Ontology in a Nutshell
2015, International Journal of Quantum Foundations 1(2):107-122
Expand entry
Added by: Sara Peppe
Abstract: The aim of this paper is to summarize a particular approach of doing metaphysics through physics - the primitive ontology approach. The idea is that any fundamental physical theory has a well-defined architecture, to the foundation of which there is the primitive ontology, which represents matter. According to the framework provided by this approach when applied to quantum mechanics, the wave function is not suitable to represent matter. Rather, the wave function has a nomological character, given that its role in the theory is to implement the law of evolution for the primitive ontology.

Comment: This article works well as a secondary reading since it refers to specific theories of physics. Previous knowledge on the cornerstones of philosophy of physics is needed.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Facebook Share on LinkedIn Share by Email
Full text Read free
Brading, Katherine, Elena Castellani. Symmetry and Symmetry Breaking
2013, The Standford Encyclopedia of Philosophy
Expand entry
Added by: Laura Jimenez
Introduction: Symmetry considerations dominate modern fundamental physics, both in quantum theory and in relativity. Philosophers are now beginning to devote increasing attention to such issues as the significance of gauge symmetry, quantum particle identity in the light of permutation symmetry, how to make sense of parity violation, the role of symmetry breaking, the empirical status of symmetry principles, and so forth. These issues relate directly to traditional problems in the philosophy of science, including the status of the laws of nature, the relationships between mathematics, physical theory, and the world, and the extent to which mathematics suggests new physics. This entry begins with a brief description of the historical roots and emergence of the concept of symmetry that is at work in modern science. It then turns to the application of this concept to physics, distinguishing between two different uses of symmetry: symmetry principles versus symmetry arguments. It mentions the different varieties of physical symmetries, outlining the ways in which they were introduced into physics. Then, stepping back from the details of the various symmetries, it makes some remarks of a general nature concerning the status and significance of symmetries in physics.

Comment: This article offers a good introduction to the topic of symmetries. The entry begins with a brief description of the historical roots and emergence of the concept of symmetry that could serve as a reading for undergraduates. It then turns to the application of this concept to physics and merges the discussion with issues in relativity and quantum mechanics. This second part of the article is thus more suitable to postgraduate courses in philosophy of science, specially, philosophy of physics. It could serve as a secondary reading for those researching the laws of nature.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Facebook Share on LinkedIn Share by Email
Full text
Cartwright, Nancy. How the Laws of Physics Lie
1983, Oxford University Press.
Expand entry
Added by: Laura Jimenez
Publisher's Note: Nancy Cartwright argues for a novel conception of the role of fundamental scientific laws in modern natural science. If we attend closely to the manner in which theoretical laws figure in the practice of science, we see that despite their great explanatory power these laws do not describe reality. Instead, fundamental laws describe highly idealized objects in models. Thus, the correct account of explanation in science is not the traditional covering law view, but the 'simulacrum' account. On this view, explanation is a matter of constructing a model that may employ, but need not be consistent with, a theoretical framework, in which phenomenological laws that are true of the empirical case in question can be derived. Anti?realism about theoretical laws does not, however, commit one to anti?realism about theoretical entities. Belief in theoretical entities can be grounded in well?tested localized causal claims about concrete physical processes, sometimes now called 'entity realism'. Such causal claims provide the basis for partial realism and they are ineliminable from the practice of explanation and intervention in nature.

Comment: Essential reading on realism and anti-realism about the laws of nature. Recommended for undergraduates who have prior knowledge of Humeanism about laws and for postgraduates in general. The book consists of a series of philosophical essays that can be used independently.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Facebook Share on LinkedIn Share by Email
Full text
Dalla Chiara, Maria Luisa. Logical Self Reference, Set Theoretical Paradoxes and the Measurement Problem in Quantum Mechanics
1977, International Journal of Philosophical Logic 6 (1):331-347.
Expand entry
Added by: Sara Peppe
Introduction: From a logical point of view the measurement problem of quantum mechanics, can be described as a characteristic question of 'semantical closure' of a theory: to what extent can a consistent theory (in this case 2R) be closed with respect to the objects and the concepfs which are described and expressed in its metatheory?

Comment: This paper considers the measurement problem in Quantum Mechanics from a logical perspective. Previous and deep knowledge of logics and Quantum Mechanics' theories is vital.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Facebook Share on LinkedIn Share by Email
Émilie du Châtelet. Foundations of Physics
2009, Selected Philosophical and Scientific Writings, ed. with an Introduction by Judith P. Zinsser, transl. by Isabelle Bour, Judith P. Zinsser, Chicago, London: University of Chicago Press, 115-200
Expand entry
Added by: Björn Freter

Abstract: I have always thought that the most sacred duty of men was to give their children an education that prevented them at a more advanced age from regretting their youth, the only time when one can truly gain instruction. You are, my dear son, in this happy age when the mind begins to think, and when the heart has passions not yet lively enough to disturb it.
Now is perhaps the only time of your life that you will devote to the study of nature. Soon the passions and pleasures of your age will occupy all your moments; and when this youthful enthusiasm has passed, and you have paid to the intoxication of the world the tribute of your age and rank, ambition will take possession of your soul; and even if in this more advanced age, which often is not any more mature, you wanted to apply yourself to the study of the true Sciences, your mind then no longer having the flexibility characteristic of its best years, it would be necessary for you to purchase with painful study what you can learn today with extreme facility. So, I want you to make the most of the dawn of your reason; I want to try to protect you from the ignorance that is still only too common among those of your rank, and which is one more fault, and one less merit.
You must early on accustom your mind to think, and to be self-sufficient. You will perceive at all the times in your life what resources and what consolations one finds in study, and you will see that it can even furnish pleasure and delight.

Comment: Introduces the conception of scientific revolution and compares it to political revolutions. A quick introduction for undergraduates can be found at https://plato.stanford.edu/entries/scientific-revolutions/#SciRevTopForHisSci and, more generally, https://plato.stanford.edu/entries/emilie-du-chatelet/.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Facebook Share on LinkedIn Share by Email
Full text See used
Ismael, Jenann. Quantum Mechanics
2014, The Standford Encyclopedia of Philosophy
Expand entry
Added by: Laura Jimenez
Introduction: Quantum mechanics is, at least at first glance and at least in part, a mathematical machine for predicting the behaviors of microscopic particles - or, at least, of the measuring instruments we use to explore those behaviors - and in that capacity, it is spectacularly successful: in terms of power and precision, head and shoulders above any theory we have ever had. Mathematically, the theory is well understood; we know what its parts are, how they are put together, and why, in the mechanical sense (i.e., in a sense that can be answered by describing the internal grinding of gear against gear), the whole thing performs the way it does, how the information that gets fed in at one end is converted into what comes out the other. The question of what kind of a world it describes, however, is controversial; there is very little agreement, among physicists and among philosophers, about what the world is like according to quantum mechanics. Minimally interpreted, the theory describes a set of facts about the way the microscopic world impinges on the macroscopic one, how it affects our measuring instruments, described in everyday language or the language of classical mechanics. Disagreement centers on the question of what a microscopic world, which affects our apparatuses in the prescribed manner, is, or even could be, like intrinsically; or how those apparatuses could themselves be built out of microscopic parts of the sort the theory describes.

Comment: The paper does not deal with the problem of the interpretation of quantum mechanics, but with the mathematical heart of the theory; the theory in its capacity as a mathematical machine. It is recommendable to read this paper before starting to read anything about the interpretations of the theory. The explanation is very clear and introductory and could serve as an introductory reading for both undergraduate and postgraduate courses in philosophy of science focused on the topic of quantum mechanics. Though clearly written, there is enough mathematics here to potentially put off symbol-phobes.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Facebook Share on LinkedIn Share by Email
Full text
Ivanova, Milena. Conventionalism, structuralism and neo-Kantianism in Poincare’s philosophy of science
2015, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):114-122.
Expand entry
Added by: Chris Blake-Turner, Contributed by: Milena Ivanova
Abstract: Poincare is well known for his conventionalism and structuralism. However, the relationship between these two theses and their place in Poincare's epistemology of science remain puzzling. In this paper I show the scope of Poincare's conventionalism and its position in Poincare's hierarchical approach to scientific theories. I argue that for Poincare scientific knowledge is relational and made possible by synthetic a priori, empirical and conventional elements, which, however, are not chosen arbitrarily. By examining his geometric conventionalism, his hierarchical account of science and defence of continuity in theory change, I argue that Poincare defends a complex structuralist position based on synthetic a priori and conventional elements, the mind-dependence of which precludes epistemic access to mind-independent structures.

Comment:

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Facebook Share on LinkedIn Share by Email
Full text Blue print
Kimmerer, Robin Wall. Braiding Sweetgrass: Indigenous Wisdom, Scientific Knowledge, and the Teaching of Plants
2015, Milkweed Editions.
Expand entry
Added by: Sonja Dobroski and Quentin Pharr
Publisher’s Note: As a botanist, Robin Wall Kimmerer has been trained to ask questions of nature with the tools of science. As a member of the Citizen Potawatomi Nation, she embraces the notion that plants and animals are our oldest teachers. In Braiding Sweetgrass, Kimmerer brings these lenses of knowledge together to show that the awakening of a wider ecological consciousness requires the acknowledgment and celebration of our reciprocal relationship with the rest of the living world. For only when we can hear the languages of other beings are we capable of understanding the generosity of the earth, and learning to give our own gifts in return.

Comment: available in this Blueprint

Share on Facebook Share on LinkedIn Share by Email
Full text Read free
Kleinsschmidt, Shieva. Reasoning without the principle of sufficient reason
2013, In Tyron Goldschmidt (ed.), The Philosophy of Existence: Why Is There Something Rather Than Nothing? Routledge. 64-79.
Expand entry
Added by: Laura Jimenez
Abstract: According to Principles of Sufficient Reason, every truth (in some relevant group) has an explanation. One of the most popular defenses of Principles of Sufficient Reason has been the presupposition of reason defense, which takes endorsement of the defended PSR to play a crucial role in our theory selection. According to recent presentations of this defense, our method of theory selection often depends on the assumption that, if a given proposition is true, then it has an explanation, and this will only be justified if we think this holds for all propositions in the relevant group. In this paper the author argues that this argument fails even when restricted to contingent propositions, and even if we grant that there is no non-arbitrary way to divide true propositions that have explanations from those that lack them. The author gives an alternate explanation of what justifies our selecting theories on the basis of explanatory features: the crucial role is not played by an endorsement of a PSR, but rather by our belief that, prima facie, we should prefer theories that exemplify explanatory power to greater degrees than their rivals.

Comment: The text covers many topics in a level proper for undergraduates: The principle of sufficient reason, the inductive argument, the problem of the Many, explanatory power, etc. Even if the reader doesn't identify with the view of the author, this article could serve as a good practice to build confidence with philosophical concepts that are crucial for metaphysics and philosophy of science.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Facebook Share on LinkedIn Share by Email
Full text
Massimi, Michela, John Peacock. The origins of the universe: laws, testability and observability in cosmology
2014, in M. Massimi (ed.), Philosophy and the Sciences for Everyone. Routledge.
Expand entry
Added by: Laura Jimenez
Summary: How did our universe form and evolve? Was there really a Big Bang, and what came before it? This chapter takes the reader through the history of contemporary cosmology and looks at how scientists arrived at the current understanding of our universe. It explores the history of astronomy, with the nebular hypothesis back in the eighteenth century, and in more recent times, Einstein's general relativity and the ensuing cosmological models. Finally, it explains the current Standard Model and early universe cosmology as well as the experimental evidence behind it.

Comment: This chapter could be used as an introductory reading to philosophy of cosmology. It provides a general overview of the history of cosmology and of the philosophical problems (laws, uniqueness, observability) that stood in the way of cosmology becoming a science. It is recommendable for undergraduate courses.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Facebook Share on LinkedIn Share by Email
Full text
Massimi, Michela, John Peacock. What are dark matter and dark energy?
2014, in M. Massimi (ed.), Philosophy and the Sciences for Everyone. Routledge
Expand entry
Added by: Laura Jimenez
Summary: According to the currently accepted model in cosmology, our universe is made up of 5% of ordinary matter, 25% cold dark matter, and 70% dark energy. But what kind of entities are dark matter and dark energy? This chapter asks what the evidence for these entities is and which rival theories are currently available. This provides with an opportunity to explore a well-known philosophical problem known as under-determination of theory by evidence.

Comment: This Chapter could serve as an introduction to contemporary cosmology and particle physics or as an example to illustrate the problem of under-determination of theory by evidence. The chapter looks at alternative theories that explain the same experimental evidence without recourse to the hypothesis of dark matter and dark energy and discusses the rationale for choosing between rival research programs. Like the rest of the chapters in this book, it is a reading recommendable for undergraduate students. It is recommended to read it after Chapter 2 of the same book.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Facebook Share on LinkedIn Share by Email
Full text
Morrison, Margaret. Spin: All is not what it seems
2007, Studies in History and Philosophy of Science Part B 38(3): 529-55.
Expand entry
Added by: Laura Jimenez
Abstract: Spin is typically thought to be a fundamental property of the electron and other elementary particles. Although it is defined as an internal angular momentum much of our understanding of it is bound up with the mathematics of group theory. This paper traces the development of the concept of spin paying particular attention to the way that quantum mechanics has influenced its interpretation in both theoretical and experimental contexts. The received view is that electron spin was discovered experimentally by Stern and Gerlach in 1921, 5 years prior to its theoretical formulation by Goudsmit and Uhlenbeck. However, neither Goudsmit nor Uhlenbeck, nor any others involved in the debate about spin cited the Stern-Gerlach experiment as corroborating evidence. In fact, Bohr and Pauli were emphatic that the spin of a single electron could not be measured in classical experiments. In recent years experiments designed to refute the Bohr-Pauli thesis and measure electron spin have been carried out. However, a number of ambiguities surround these results - ambiguities that relate not only to the measurements themselves but to the interpretation of the experiments. After discussing these various issues the author raises some philosophical questions about the ontological and epistemic status of spin.

Comment: The goal of the paper is to uncover and isolate how spin presents problems for traditional realism and to illustrate the power that theories like quantum mechanics have for shaping both philosophical questions and answers. It is adequate for higher-level postgraduate courses in Philosophy of Science.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Facebook Share on LinkedIn Share by Email
Read free Blue print
Narayanan, Arvind. The Limits of the Quantitative Approach to Discrimination
2022, James Baldwin Lecture Series
Expand entry
Added by: Tomasz Zyglewicz, Shannon Brick, Michael Greer
Introduction: Let’s set the stage. In 2016, ProPublica released a ground-breaking investigation called Machine Bias. You’ve probably heard of it. They examined a criminal risk prediction tool that’s used across the country. These are tools that claim to predict the likelihood that a defendant will reoffend if released, and they are used to inform bail and parole decisions.

Comment (from this Blueprint): This is a written transcript of the James Baldwin lecture, delivered by the computer scientist Arvind Narayanan, at Princeton in 2022. Narayanan's prior research has examined algorithmic bias and standards of fairness with respect to algorithmic decision making. Here, he engages critically with his own discipline, suggesting that there are serious limits to the sorts of quantitative methods that computer scientists recruit to investigate the potential biases in their own tools. Narayanan acknowledges that in voicing this critique, he is echoing claims by feminist researchers from fields beyond computer science. However, his own arguments, centered as they are on the details of the quantitative methods he is at home with, home in on exactly why these prior criticisms hold up in a way that seeks to speak more persuasively to Narayanan's own peers in computer science and other quantitative fields.

Share on Facebook Share on LinkedIn Share by Email
Full text
Rochberg, Francesca. Before Nature: Cuneiform Knowledge and the History of Science
2016, Chicago University Press
Expand entry
, Contributed by: Quentin Pharr
Publisher’s Note: In the modern West, we take for granted that what we call the “natural world” confronts us all and always has—but Before Nature explores that almost unimaginable time when there was no such conception of “nature”—no word, reference, or sense for it. Before the concept of nature formed over the long history of European philosophy and science, our ancestors in ancient Assyria and Babylonia developed an inquiry into the world in a way that is kindred to our modern science. With Before Nature, Francesca Rochberg explores that Assyro-Babylonian knowledge tradition and shows how it relates to the entire history of science. From a modern, Western perspective, a world not conceived somehow within the framework of physical nature is difficult—if not impossible—to imagine. Yet, as Rochberg lays out, ancient investigations of regularity and irregularity, norms and anomalies clearly established an axis of knowledge between the knower and an intelligible, ordered world. Rochberg is the first scholar to make a case for how exactly we can understand cuneiform knowledge, observation, prediction, and explanation in relation to science—without recourse to later ideas of nature. Systematically examining the whole of Mesopotamian science with a distinctive historical and methodological approach, Before Nature will open up surprising new pathways for studying the history of science.

Comment: For students wondering whether or not "philosophy" was done before Socrates and the Pre-Socratics, this text is a fairly comprehensive overview of how ancient Assyro-Babylonians conceived of "nature," their place within it, studied it, and recorded their findings about it. But, more than anything else, this text also shows that ancient Near Eastern cuneiform texts are not to be ignored by budding scholars of ancient philosophy or historians and philosophers of the sciences and their methodologies. Some prior engagement with ancient Greek philosophy, as well as the history and philosophy of science, will help to understand this text.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Facebook Share on LinkedIn Share by Email
Can’t find it?
Contribute the texts you think should be here and we’ll add them soon!