-
Expand entry
-
Added by: Andrea BlomqvistAbstract: By carefully examining one of the most famous thought experiments in the history of science - that by which Galileo is said to have refuted the Aristotelian theory that heavier bodies fall faster than lighter ones - I attempt to show that thought experiments play a distinctive role in scientific inquiry. Reasoning about particular entities within the context of an imaginary scenario can lead to rationally justified concluusions that - given the same initial information - would not be rationally justifiable on the basis of a straightforward argument.
-
Expand entry
-
Added by: Laura JimenezSummary: This chapter offers a general introduction to philosophy of science. The first part of the chapter takes the reader through the famous relativist debate about Galileo and Cardinal Bellarmine. Several important questions on the topic are explored, such as what makes scientific knowledge special compared with other kinds of knowledge or the importance of demarcating science from non-science. Finally, the chapters gives an overview on how philosophers such as Popper, Duhem, Quine and Kuhn came to answer these questions.
Comment: This chapter could be used as in introductory reading to review the nature of scientific knowledge and the most important debates about the scientific method. It is recommendable for undergraduate courses in philosophy of science. No previous knowledge of the field is needed in order to understand the content. The chapter is an introduction to the rest of the book Philosophy and the Sciences for Everyone. Some discussions explored here, such as the problem of underdetermination or Tomas Kuhn's view of scientific knowledge are central to the following chapters in philosophy of cosmology.
-
Expand entry
-
Added by: Chris Blake-Turner, Contributed by: Cailin O'ConnorAbstract: Vague predicates, those that exhibit borderline cases, pose a persistent problem for philosophers and logicians. Although they are ubiquitous in natural language, when used in a logical context, vague predicates lead to contradiction. This paper will address a question that is intimately related to this problem. Given their inherent imprecision, why do vague predicates arise in the first place? I discuss a variation of the signaling game where the state space is treated as contiguous, i.e., endowed with a metric that captures a similarity relation over states. This added structure is manifested in payoffs that reward approximate coordination between sender and receiver as well as perfect coordination. I evolve these games using a variation of Herrnstein reinforcement learning that better reflects the generalizing learning strategies real-world actors use in situations where states of the world are similar. In these simulations, signaling can develop very quickly, and the signals are vague in much the way ordinary language predicates are vague - they each exclusively apply to certain items, but for some transition period both signals apply to varying degrees. Moreover, I show that under certain parameter values, in particular when state spaces are large and time is limited, learning generalization of this sort yields strategies with higher payoffs than standard Herrnstein reinforcement learning. These models may then help explain why the phenomenon of vagueness arises in natural language: the learning strategies that allow actors to quickly and effectively develop signaling conventions in contiguous state spaces make it unavoidable
Comment:
-
Expand entry
-
Added by: Laura JimenezBack Matter: What is science? Is there a real difference between science and myth? Is science objective? Can science explain everything? This Very Short Introduction provides a concise overview of the main themes of contemporary philosophy of science. Beginning with a short history of science to set the scene, Samir Okasha goes on to investigate the nature of scientific reasoning, scientific explanation, revolutions in science, and theories such as realism and anti-realism. He also looks at philosophical issues in particular sciences, including the problem of classification in biology, and the nature of space and time in physics. The final chapter touches on the conflicts between science and religion, and explores whether science is ultimately a good thing.
Comment: The book is extremely readable and clear. It is perfect as an introduction for undergraduate students to philosophy of science. It offers an overview of the most important topics of the field including philosophical problems in biology, physics, and linguistics.
-
Expand entry
-
Added by: Laura JimenezSummary: This book serves as an excellent introduction to Indian philosophy from the standpoint of the Nyãya-Vaisesika worldview. The book is divided into six chapters: (i) Introduction; (ii) Doubt (including sections like "Types of Doubt" and "Limits of Doubt"); (iii) Indian Logic (in which Dignaga, Dharmakïrti, and a "Summary of Themes in Indian Logic Relevant to Philosophy of Science" are discussed); (iv) Logic in Science: The Western Way (dealing, among other things, with induction, deduction, and laws and counterfactuals); (v) Science in Logic: The Indian Way? ; and (vi) Knowledge, Truth and Language (including sections with titles like the Pramäna Theory, Truth in Western and Indian Philosophies and Science, Effability, and Bhartrhai).
Comment: The book is recommendable, not only as an introduction to significant and basic themes in Indian philosophy, but also for insightful details in explaining several complex ideas in science and philosophy and for a clear explication of the Indian contribution to discussions on them. Could be suitable for both undergratuates and postgraduates.
Comment: This paper would be good to put as further reading in a week focusing on thought experiments. Suitable for a third year module.