Bergmann, Merrie. An Introduction to Many-Valued and Fuzzy Logic: Semantics, Algebras, and Derivation Systems
2008, Cambridge University Press.
Expand entry
Publisher's note: This volume is an accessible introduction to the subject of many-valued and fuzzy logic suitable for use in relevant advanced undergraduate and graduate courses. The text opens with a discussion of the philosophical issues that give rise to fuzzy logic - problems arising from vague language - and returns to those issues as logical systems are presented. For historical and pedagogical reasons, three valued logical systems are presented as useful intermediate systems for studying the principles and theory behind fuzzy logic. The major fuzzy logical systems - Lukasiewicz, Godel, and product logics - are then presented as generalizations of three-valued systems that successfully address the problems of vagueness. Semantic and axiomatic systems for three-valued and fuzzy logics are examined along with an introduction to the algebras characteristic of those systems. A clear presentation of technical concepts, this book includes exercises throughout the text that pose straightforward problems, ask students to continue proofs begun in the text, and engage them in the comparison of logical systems.

Comment: This book is ideal for an intermediate-level course on many-valued and/or fuzzy logic. Although it includes a presentation of propositional and first-order logic, it is intended for students who are familiar with classical logic. However, no previous knowledge of many-valued or fuzzy logic is required. It can also be used as a secondary reading for a general course on non-classical logics. In the words of the author: 'The truth-valued semantic chapters are independent of the algebraic and axiomatic ones, so that either of the latter may be skipped. Except for Section 13.3 of Chapter 13, the axiomatic chapters are also independent of the algebraic ones, and an instructor who chooses to skip the algebraic material can simply ignore the latter part of 13.3. Finally, Lukasiewicz fuzzy logic is presented independently of Gödel and product fuzzy logics, thus allowing an instructor to focus solely on the former. There are exercises throughout the text. Some pose straightforward problems for the student to solve, but many exercises also ask students to continue proofs begun in the text, to prove results analogous to those in the text, and to compare the various logical systems that are presented.'

Bergmann, Merrie, James Moor, Jack Nelson. The Logic Book
2003, Mcgraw-Hill.
Expand entry
Summary: This book is an introductory textbook on mathematical logic. It covers Propositional Logic and Predicate Logic. For each of these formalisms it presents its syntax and formal semantics as well as a tableaux-style method of consistency-checking and a natural deduction-style deductive calculus. Moreover, it discusses the metatheory of both logics.

Comment: This book would be ideal for an introductory course on symbolic logic. It presupposes no previous training in logic, and because it covers sentential logic through the metatheory of first-order predicate logic, it is suitable for both introductory and intermediate courses in symbolic logic. The instructor who does not want to emphasize metatheory can simply omit Chapters 6 and 11. The chapters on truth-trees and the chapters on derivations are independent, so it is possible to cover truth-trees but not derivations and vice versa. However, the chapters on truth-trees do depend on the chapters presenting semantics; that is, Chapter 4 depends on Chapter 3 and Chapter 9 depends on Chapter 8. In contrast, the derivation chapters can be covered without first covering semantics. The Logic Book includes large exercise sets for all chapters. Answers to unstarred exercises appear in the Student Solutions Manual, available at www.mhhe.com/bergmann6e, while answers to starred exercises appear in the Instructor's Manual, which can be obtained by following the instructions on the same web page.

Bimbo, Katalin. Proof Theory: Sequent Calculi and Related Formalisms
2015, CRC Press, Boca Raton, FL
Expand entry
Publisher's Note: Although sequent calculi constitute an important category of proof systems, they are not as well known as axiomatic and natural deduction systems. Addressing this deficiency, Proof Theory: Sequent Calculi and Related Formalisms presents a comprehensive treatment of sequent calculi, including a wide range of variations. It focuses on sequent calculi for various non-classical logics, from intuitionistic logic to relevance logic, linear logic, and modal logic. In the first chapters, the author emphasizes classical logic and a variety of different sequent calculi for classical and intuitionistic logics. She then presents other non-classical logics and meta-logical results, including decidability results obtained specifically using sequent calculus formalizations of logics.

Comment: This book can be used in a variety of advanced undergraduate and postgraduate courses. Chapters 1, 2, 3 and 8 may be useful in an advanced undergraduate or beginning graduate course, where an emphasis is placed on classical logic and on a range of different proof calculi (mainly for classical logic). Chapters 4, 5 and 6 deal almost exclusively with non-classical logics. Chapters 7 and 9 are rich in meta-logical results, including results that have been obtained specifically using sequent calculus formalizations of various logics. These last five chapters might be used in a graduate course that embraces classical and nonclassical logics together with their meta-theory. To facilitate the use of the book as a text in a course, the text is peppered with exercises. In general, the starring indicates an increase in difficulty, however, sometimes an exercise is starred simply because it goes beyond the scope of the book or it is very lengthy. Solutions to selected exercises may be found on the web at the URL www.ualberta.ca/˜bimbo/ProofTheoryBook.

Cauman, Leigh S.. First Order Logic: An Introduction
1998, Walter de Gruyter & Co.
Expand entry
Added by: Berta Grimau, Contributed by: Matt Clemens
Publisher's Note: This teaching book is designed to help its readers to reason systematically, reliably, and to some extent self-consciously, in the course of their ordinary pursuits-primarily in inquiry and in decision making. The principles and techniques recommended are explained and justified - not just stated; the aim is to teach orderly thinking, not the manipulation of symbols. The structure of material follows that of Quine's Methods of Logic, and may be used as an introduction to that work, with sections on truth-functional logic, predicate logic, relational logic, and identity and description. Exercises are based on problems designed by authors including Quine, John Cooley, Richard Jeffrey, and Lewis Carroll.

Comment: This book is adequate for a first course on formal logic. Moreover, its table of contents follows that of Quine's "Methods of Logic", thus it can serve as an introduction or as a reference text for the study of the latter.

Klenk, Virginia. Understanding Symbolic Logic
2008, Pearson Prentice Hall.
Expand entry