Deprecated: wp_make_content_images_responsive is deprecated since version 5.5.0! Use wp_filter_content_tags() instead. in /home/diversityreading/public_html/wp-includes/functions.php on line 4773
Full text Read free See used
Cardona, Carlos Alberto, , . Kepler: Analogies in the search for the law of refraction
2016, Studies in History and Philosophy of Science Part A 59:22-35.
Expand entry
Added by: Clotilde Torregrossa, Contributed by: Juan R. Loaiza

Publisher’s Note: This paper examines the methodology used by Kepler to discover a quantitative law of refraction. The aim is to argue that this methodology follows a heuristic method based on the following two Pythagorean principles: (1) sameness is made known by sameness, and (2) harmony arises from establishing a limit to what is unlimited. We will analyse some of the author’s proposed analogies to find the aforementioned law and argue that the investigation’s heuristic pursues such principles.

Comment: [This is a stub entry. Please add your comments to help us expand it]

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options
Full text Read free See used
Hesse, Mary, , . The Structure of scientific inference
1974, University of California Press.
Expand entry
Added by: Laura Jimenez, Contributed by:

Publisher’s Note: A danger of a heavily formalist approach to the structure of science is that it may lose sight of the concrete actualities on which scientific inference is exercised. On the other hand, and excessively descriptive and relativist approach fails to achieve a general systematization of models of inference. This book tries to steer a middle course between these extremes. Hesse first discusses some epistemological problems bequeathed by positivists analyses of science and also considers the problem of inductive justification of theories in relation to evidence. Following Keynes and Carnap she argues that the axioms of probability constitute the best postulate system for a logic of confirmation.

Comment: Highly recommended for undergraduates. It covers many important points of the topic: confirmation theory, generalizations, causal laws… It is useful for courses in philosophy of science but it could also serve as a further reading for courses in epistemology.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options
Full text Read free See used
Kólá Abímbólá, , . A critique of Methodological Naturalism
2006, Science in Context, 19(2): 191-213.
Expand entry
Added by: Laura Jimenez, Contributed by:

Abstract: Larry Laudan defends “methodological naturalism” – the position that scientific methodology can be fully empirical and be subject to radical change without sacrificing the rationality of science. This view has two main components: (a) the historical claim that just as substantive science has changed and developed in response to new information and evidence, so have the basic rules and methods which guide theory appraisal in science changed in response to new information about the world; and (b) the philosophical claim that all aspects of science are in principle subject to radical change and evolution in the light of new information about the world. In this paper, the athor argues that one main historical example used by Laudan, namely, the scientific revolution that accompanied the change from the corpuscular to the wave theory of light, does not in fact support the view that there have been radical methodological changes in the history of science.

Comment: Interesting paper about the question of methodological changes in the history of science. Its clarity makes it suitable for undergraduate courses in philosophy of science.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options
Full text Read free See used
Massimi, Michela, , Duncan Pritchard. What is this thing called science?
2014, in M. Massimi (ed.), Philosophy and the Sciences for Everyone. Routledge
Expand entry
Added by: Laura Jimenez, Contributed by:

Summary: This chapter offers a general introduction to philosophy of science. The first part of the chapter takes the reader through the famous relativist debate about Galileo and Cardinal Bellarmine. Several important questions on the topic are explored, such as what makes scientific knowledge special compared with other kinds of knowledge or the importance of demarcating science from non-science. Finally, the chapters gives an overview on how philosophers such as Popper, Duhem, Quine and Kuhn came to answer these questions.

Comment: This chapter could be used as in introductory reading to review the nature of scientific knowledge and the most important debates about the scientific method. It is recommendable for undergraduate courses in philosophy of science. No previous knowledge of the field is needed in order to understand the content. The chapter is an introduction to the rest of the book Philosophy and the Sciences for Everyone. Some discussions explored here, such as the problem of underdetermination or Tomas Kuhn’s view of scientific knowledge are central to the following chapters in philosophy of cosmology.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options
Full text Read free See used
Shrader-Frechette, Kristine, , . Tainted: How Philosophy of Science can expose bad science
2014, Oxford University Press USA.
Expand entry
Added by: Laura Jimenez, Contributed by:

Abstract: Lawyers often work pro bono to liberate death-row inmates from flawed legal verdicts that otherwise would kill them. This is the first book on practical philosophy of science, how to practically evaluate scientific findings with life-and-death consequences. Showing how to uncover scores of scientific flaws – typically used by special interests who try to justify their pollution – this book aims to liberate many potential victims of environmentally induced disease and death.It shows how citizens can help uncover flawed science and thus liberate people from science-related societal harms such as pesticides, waste dumps, and nuclear power. It shows how flawed biology, economics, hydrogeology, physics, statistics, and toxicology are misused in ways that make life-and-death differences for humans. It thus analyzes science at the heart of contemporary controversies – from cell phones, climate change, and contraceptives, to plastic food containers and radioactive waste facilities. It illustrates how to evaluate these scientific findings, instead of merely describing what they are. Practical evaluation of science is important because, at least in the United States, 75 percent of all science is funded by special interests, to achieve specific practical goals, such as developing pharmaceuticals or showing some pollutant causes no harm. Of the remaining 25 percent of US science funding, more than half addresses military goals. This means that less than one-eighth of US science funding is for basic science; roughly seven-eighths is done by special interests, for practical projects from which they hope to profit. The problem, however, is that often this flawed, special-interest science harms the public.

Comment: Recommended for students in philosophy of science, environmental ethics or science policy. Could serve as an introductory reading for practical philosophy of science. It is easy to read and suitable for undergraduate students.

Export citation in BibTeX format
Export text citation
View this text on PhilPapers
Export citation in Reference Manager format
Export citation in EndNote format
Export citation in Zotero format
Share on Twitter Share on Facebook Share on Google Plus Share on Pinterest Share by Email More options