Adeel, M. Ashraf, and . Evolution of Quine’s Thinking on the Thesis of Underdetermination and Scott Soames’s Accusation of Paradoxicality

2015, HOPOS: The Journal of the International Society for the History of Philosophy of Science 5(1): 56-69.

Abstract: Scott Soames argues that interpreted in the light of Quine’s holistic verificationism, Quine’s thesis of underdetermination leads to a contradiction. It is contended here that if we pay proper attention to the evolution of Quine’s thinking on the subject, particularly his criterion of theory individuation, Quine’s thesis of underdetermination escapes Soames’ charge of paradoxicality.

Comment: Good as a secondary reading for those who are confident with Quine's thesis of underdetermination. Recomended for postgraduate courses in philosophy of science.

Alexandrova, Anna, and . Making Models Count

2008, Philosophy of Science 75(3): 383-404.

Abstract: What sort of claims do scientific models make and how do these claims then underwrite empirical successes such as explanations and reliable policy interventions? In this paper I propose answers to these questions for the class of models used throughout the social and biological sciences, namely idealized deductive ones with a causal interpretation. I argue that the two main existing accounts misrepresent how these models are actually used, and propose a new account.

Comment: A good exploration of the role of models in scientific practice. Provides a good overview of the main theories about models, and some objections to them, before suggesting an alternative. Good use of concrete examples, presented very clearly. Suitable for undergraduate teaching. Would form a useful part of an examination of modelling in philosophy of science.

Anderson, Elizabeth, and . Feminist Epistemology and Philosophy of Science

2015, Stanford Encyclopedia of Philosophy.

Abstract: Feminist epistemology and philosophy of science studies the ways in which gender does and ought to influence our conceptions of knowledge, the knowing subject, and practices of inquiry and justification. It identifies ways in which dominant conceptions and practices of knowledge attribution, acquisition, and justification systematically disadvantage women and other subordinated groups, and strives to reform these conceptions and practices so that they serve the interests of these groups. Various practitioners of feminist epistemology and philosophy of science argue that dominant knowledge practices disadvantage women by (1) excluding them from inquiry, (2) denying them epistemic authority, (3) denigrating their ‘feminine’ cognitive styles and modes of knowledge, (4) producing theories of women that represent them as inferior, deviant, or significant only in the ways they serve male interests, (5) producing theories of social phenomena that render women’s activities and interests, or gendered power relations, invisible, and (6) producing knowledge (science and technology) that is not useful for people in subordinate positions, or that reinforces gender and other social hierarchies. Feminist epistemologists trace these failures to flawed conceptions of knowledge, knowers, objectivity, and scientific methodology. They offer diverse accounts of how to overcome these failures. They also aim to (1) explain why the entry of women and feminist scholars into different academic disciplines, especially in biology and the social sciences, has generated new questions, theories, and methods, (2) show how gender and feminist values and perspectives have played a causal role in these transformations, (3) promote theories that aid egalitarian and liberation movements, and (4) defend these developments as cognitive, not just social, advances.

Comment: A very detailed primer on feminist epistemology and philosophy of science. Covers a wide range of topics and issues, its length is such that it would probably be best to assign specific sections that are of interest rather than reading the whole thing. Useful as a preliminary introduction to the topics covered, and also offers a good summary of objections to the views presented.

Bechtel, William P., and Jennifer Mundale. Multiple realizability revisited: Linking cognitive and neural states

1999, Philosophy of Science 66 (2):175-207 (1999)

Abstract: The claim of the multiple realizability of mental states by brain states has been a major feature of the dominant philosophy of mind of the late 20th century. The claim is usually motivated by evidence that mental states are multiply realized, both within humans and between humans and other species. We challenge this contention by focusing on how neuroscientists differentiate brain areas. The fact that they rely centrally on psychological measures in mapping the brain and do so in a comparative fashion undercuts the likelihood that, at least within organic life forms, we are likely to find cases of multiply realized psychological functions.

Comment: One of the better arguments against multipe realizability. Could be used in any philosophy of mind course where that claim arises as a demonstration of how it could be challenged. A good deal of discussion about neuroscientific practices and methods, but not excessively technical.

Beebee, Helen, and . Necessary Connections and the Problem of Induction

2011, Noûs 45(3): 504-527.

Summary: In this paper Beebee argues that the problem of induction, which she describes as a genuine sceptical problem, is the same for Humeans than for Necessitarians. Neither scientific essentialists nor Armstrong can solve the problem of induction by appealing to IBE (Inference to the Best Explanation), for both arguments take an illicit inductive step.

Comment: This paper describes in a comprehensible way Armstrong's and the Humean approaches to the problem of induction. Ideal for postgraduate philosophy of science courses, although it could be a further reading for undergraduate courses as well.

Bokulich, Alisa, and . How scientific models can explain

2009, Synthese 180(1): 33-45.

Abstract: Scientific models invariably involve some degree of idealization, abstraction, or fictionalization of their target system. Nonetheless, I argue that there are circumstances under which such false models can offer genuine scientific explanations. After reviewing three different proposals in the literature for how models can explain, I shall introduce a more general account of what I call model explanations, which specify the conditions under which models can be counted as explanatory. I shall illustrate this new framework by applying it to the case of Bohr’s model of the atom, and conclude by drawing some distinctions between phenomenological models, explanatory models, and fictional models.

Comment: Interesting paper about scientific modelling. It is easy to read and could serve as an introduction to the topic. The paper explores three approaches to Model Explanations: mechanist model explanations, covering-law model explanations, and causal model explanations. The explanatory function in models is illustrated with the example of Bohr's atom. This article is recommended for undergraduate students.

Bokulich, Alisa, and . Distinguishing Explanatory from Nonexplanatory Fictions

2012, Philosophy of Science 79(5): 725-737.

Abstract: There is a growing recognition that fictions have a number of legitimate functions in science, even when it comes to scientific explanation. However, the question then arises, what distinguishes an explanatory fiction from a nonexplanatory one? Here I examine two cases – one in which there is a consensus in the scientific community that the fiction is explanatory and another in which the fiction is not explanatory. I shall show how my account of “model explanations” is able to explain this asymmetry, and argue that realism – of a more subtle form – does have a role in distinguishing explanatory from nonexplanatory fictions.

Comment: This would be useful in a course on the philosophy of science or the philosophy of fiction. It is particularly useful for teaching, as it is cutting edge in the philosophy of science but not particularly technical.

Cartwright, Nancy, and . The Truth Doesn’t Explain Much

1980, American Philosophical Quarterly 17(2): 159 - 163.

Summary: It has sometimes been argued that the covering law model in philosophy of science is too permissive about what gets to count as an explanation. This paper, by contrast, argues that it lets in too little, since there are far too few covering laws to account for all of our explanations. In fact, we rely on ceteris paribus laws that are literally false. Though these are not a true description of nature, they do a good job of allowing us to explain phenomena, so we should be careful to keep those two functions of science separate.

Comment: This relatively brief article offers a good illustration of how, contrary to some preconceptions, science does not always aim at absolute or universal truths, and instead allows pragmatic considerations to play a large role. Useful as part of an examination of what scientific laws really are and what their role is.

Cartwright, Nancy, and . Where Do Laws of Nature Come From?

1997, Dialectica 51(1): 65-78.

Summary: Cartwright explains and defends the view that causal capacities are more fundamental than laws of nature. She does this by considering scientific practice: the kind of knowledge required to make experimental setups and predictions is knowledge of the causal capacities of the entities in those systems, not knowledge of laws of nature.

Comment: A good introduction to Cartwright's views and the position that causal capacities are real and more fundamental than laws of nature. Useful reading for both undergraduate and graduate courses in philosophy of science and metaphysics.

Cartwright, Nancy, and . The Dappled World: A study of the Boundaries of Science

1999, Cambridge University Press.

Publisher’s Note: It is often supposed that the spectacular successes of our modern mathematical sciences support a lofty vision of a world completely ordered by one single elegant theory. In this book Nancy Cartwright argues to the contrary. When we draw our image of the world from the way modern science works – as empiricism teaches us we should – we end up with a world where some features are precisely ordered, others are given to rough regularity and still others behave in their own diverse ways. This patchwork makes sense when we realise that laws are very special productions of nature, requiring very special arrangements for their generation. Combining classic and newly written essays on physics and economics, The Dappled World carries important philosophical consequences and offers serious lessons for both the natural and the social sciences.

Comment: Really important work in the topic of the laws of nature and scientific modelling. The book requires a pretty thorough understanding of both philosophical method and matters of science. Recommended for postgraduate courses in philosophy of science.